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Abstract 12 

Satellite altimetry has provided during the last 30 years an unprecedented amount of high-13 

resolution and high-accuracy data for the state of the oceans. With the latest altimetric satellites 14 

utilizing the SAR and SAR-in modes, reliable sea surface heights close to the coastline can be 15 

determined more efficiently. The main purpose of this paper is to estimate Sea Level Anomalies 16 

(SLAs) close to the coastline and to areas where data are absent, while Least Squares 17 

Collocation (LSC) has been used to carry out the prediction. The selected study area is the entire 18 

Mediterranean Sea and the estimation of SLA values was carried out using raw Cryosat-2 19 

observations. For LSC to be applied, empirical and analytical covariance function models are 20 

defined and evaluated for estimating SLAs within 10° block windows. In order to investigate 21 

the accuracy of the analytical covariance functions that provide the most accurate results, 22 

prediction has been carried out at a single point, randomly selected in the Greek region being 23 

close to the coastline. From the analysis carried out, three types of analytical covariance 24 

functions were deemed as the optimal ones, providing a mean prediction accuracy at the 3.7 cm 25 

level. These models were then used for the SLA estimation at the 10o windows, specifying local 26 

empirical and analytical covariance function models. The prediction accuracies achieved range 27 

between 3.7 cm and 12.5 cm depending on the presence of islands.  28 
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1. Introduction 32 

Over the last few decades, climate induced ocean variations have been one of the most 33 

important environmental problems worldwide. Taking into consideration and studying 34 



these changes, the scientific community has tried to gather even more information about 35 

their triggering factors and their consequences. This has been largely achieved through 36 

dedicated satellite missions aiming to monitor the marine environment and the mass 37 

loss in the Polar Regions, which is caused by ice melting. One of the main consequences 38 

are increasing levels of the Earth’s oceans with foreseen impact on the anthropogenic 39 

and natural environment. To that respect, and in order for satellite data to be 40 

incorporated in forecasting and assimilation models, their inherent high-accuracy over 41 

marine regions should be extended to coastal ones and to areas where data are absent. 42 

Additionally, improved representation and estimation of sea surface heights close to the 43 

coastline will have a direct, positive, impact on height system unification (HSU) in 44 

remote areas and regions where GPS-derived ellipsoidal heights cannot be acquired 45 

(Gruber et al. 2012). For the altimetric records to be extended close to the coastline an 46 

interpolation, extrapolation in reality, needs to be carried out. In that way, the 47 

continuous along-track measurements in pure sea areas will be brought closer to coastal 48 

areas and within a small distance (close to 1 km) from the coasts, where a Tide Gauge 49 

(TG) station is situated. For this prediction to be carried out accurately, a rigorous 50 

method should be employed. In physical geodesy, Least Squares Collocation (LSC) has 51 

been used for long as an optimal estimator (Barzaghi et al. 2009, Moritz 1980), in the 52 

sense that it provides highly accurate prediction results, given the data accuracy and the 53 

statistical characteristics of the input field. LSC requires knowledge of both input data 54 

and error variance-covariance matrices, the latter being defined by the analytical 55 

covariance functions of the input signals.  The mission of Cryosat-2 offers dense cross-56 

track spacing as a result of the Synthetic Aperture Radar (SAR) and SAR-in drifting 57 

modes leading to high spatial resolution (Francis 2007, Wingham et al. 2006). Due to 58 

the fact that the Mediterranean Sea is a semi-enclosed marine region with many islands 59 

and isles disrupting the pure marine observations, Cryosat-2 was chosen as the most 60 

appropriate for the specific nature of this particular study area (Andersen and Piccioni 61 

2016). Through Cryosat-2 data, analytical covariance functions were estimated based 62 

on exponential, polynomial and Gauss-Markov models, and prediction of Sea Level 63 

Anomaly (SLA) values has been carried out to conclude on the most proper ones in 64 

order to derive SLAs in coastal areas. The analytical models providing the highest 65 

prediction accuracy are then used to extend the SLA information in areas with little or 66 

no data, especially close to the coastline. To that respect, the entire Mediterranean basin 67 

was split in individual windows of 10°×10° degrees, and separate empirical covariance 68 



functions have been estimated, in order to derive representative analytical models for 69 

each sub-area. Finally, the absolute accuracies offered by the various covariance models 70 

were assessed by comparing them as to the results they provide in a specific prediction 71 

case.  72 

 73 

2. Satellite altimetry data availability and methodology 74 

The used raw data refer to SLAs for one cycle (cycle 13 – 12127 SLA values) of the 75 

Cryosat-2 satellite mission from 14.03.2011 to 12.04.2011 within the entire 76 

Mediterranean Sea (30° ≤ φ ≤ 50° and -10° ≤ λ ≤ 40°). The Cryosat-2 data were acquired 77 

from the RADS system (RADS 2016, Scharroo et al. 2013), which has a collection of 78 

data from past and current satellite altimetry missions. All geophysical and  79 

instrumental corrections have been applied, using the default models proposed  by  the  80 

RADS  system,  so  that  corrected  SLAs would  be  available. During this pre-81 

processing step, the derived SLAs have been referred to the EGM2008 Zero-Tide (ZT) 82 

geoid (Pavlis et al. 2012) and the Jason ellipsoid (Dumont et al. 2016). Figure 1 depicts 83 

the distribution of the Cryosat-2 data over the entire Mediterranean basin as well as the 84 

SLA variations, while Table 1 presents the respective statistics. 85 

 86 

Figure 1 87 

 88 

To evaluate the performance of SLA prediction close to the coastline, LSC has been 89 

employed using various covariance functions. Initially, in order to evaluate their 90 

performance the available data have been separated in two equal halves, one acting as 91 

the input dataset and the other as the prediction one. A bin size of 20km was chosen for 92 

the analytical covariance functions, while points up to distances of 300 km from the 93 

prediction point have been used. Initially, the empirical covariance function model was 94 

calculated in order to represent the local statistical characteristics. If each observation 95 

yi represents a small area Ai and yj represents an area Aj then the empirical covariance 96 

is (Tscherning and Rapp 1974): 97 
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If the area is subdivided into small cells holding one observation each and Ai and Aj 99 

are assumed to be equal then Eq. (1) reduces to: 100 
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where  Nk is the number of products yi yj in the kth  interval (Knudsen 1987). In our case 102 

the empirical covariances of SLA (hSLA) for a given spherical distance ψ is: 103 



SLA SLA SLA SLA
k i j i jC =(h ,h ,ψ)=Μ{h ,h } .                                                                               (3) 104 

where 
SLA SLA

i jΜ{h ,h } is the mean value of products between SLA

ih  and 
SLA

jh which are 105 

included in the bin size of 20km. 106 

The analytical covariance function models employed have been based on four 107 

exponential, one polynomial and two Gauss-Markov models (Natsiopoulos et al. 2016, 108 

Vergos et al. 2013), as: 109 
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SLA SLAh h

3 2C (ψ)= aψ +bψ +cψ+d .                                                                                  (8) 115 

In Eqs. (4) - (8), a, b, c and d denote parameters to be determined, so that the analytical 116 

covariance model will fit the empirical one, ψ is the spherical distance and117 

1k ij k     . The 2nd and 3nd order Gauss-Markov models are outlined in Eqs. (9) 118 

and (10) respectively, where D is the characteristic distance, r is the planar distance and 119 

2 SLAh
 the SLA variance (Jordan 1972; Knudsen and Tscherning 2007): 120 
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The above models are represented as model A, B,…,G in the following tables, in order 123 

to make it easier to read. The estimation is carried out as (Knudsen and Tscherning, 124 

2007; Tscherning and Rapp, 1974): 125 

SLA SLA SLA SLAh h h h

SLA
-1 SLA(P)= (P, )h C C h                                                                                (11) 126 

In Eq. (11), 
SLA

(P)h  denotes the SLA to be predicted at point P, SLA
h is the vector of 127 

observations, ( , )SLA SLAh h
PC  is the cross-covariance matrix between the SLA to be 128 

predicted and the input signals and SLA SLAh h

-1
C  is the full variance-covariance matrix of the 129 

input SLA determined from the used analytical covariance function model. 130 

 131 

3. Numerical results for Mediterranean Sea 132 

In the sequel, the results from the evaluation of alternative analytical covariance 133 

function models are presented. Table 1 presents the statistics of the initial SLA dataset 134 

and its differences with the predicted ones using the aforementioned analytical 135 

covariance function models. From Table 1 it can be seen that the accuracy of SLA 136 

values is improved using LSC method, as indicators precision are taken into account at 137 

original ones.  All models present a mean value close to zero, whereas simultaneously 138 

the exponential models A and D and the polynomial model E provide the optimum 139 

results with a std at the 3.70 cm, 3.72 cm and 3.69 cm respectively. The exponential 140 

model B provides a std at the 3.76 cm, which can also be accepted for a subsequent 141 

prediction. In this paper were chosen the three optimum models for further 142 

investigation. The 2nd and 3rd order Gauss Markov models provide a std at the 8.38 cm 143 

and 5.44 cm respectively, which can be considered as larger compared to that of the 144 

exponential and polynomial models. The exponential model C presents the worst fitting 145 

at initial data with a std at the 60.60 cm, both in open sea and close to coastline.  146 



Table 1 147 

 148 

Models A, D and E were then chosen to carry-out SLA estimation close to the coastline. 149 

In order to predict those SLA values with high prediction accuracy, the input data were 150 

separated in 10 windows each spanning 10° (see Figure 2). The concept is that locally 151 

estimated analytical covariance functions will depict the SLA variability better 152 

compared to a global Mediterranean-wide one. The estimation was carried-out to 153 

specific points up to a radius of 100 km from the coastline. From this set of points, those 154 

within a distance of 15 km from the coastline were the prediction ones, whereas those 155 

between 16 km and 100 km were the ones acting as the input since they are located in 156 

the open water. This scenario resembles the case where altimetry data are available in 157 

purely marine areas and they need to be interpolated and/or extended close to the 158 

coastline. Table 2, presents the statistics of the differences between the original SLAs 159 

and those predicted with the chosen analytical covariance function models A, D and E. 160 

 161 

Figure 2 162 

From above table, it can be seen that using LSC SLA prediction is carried out with 163 

reasonable accuracy in all windows except windows 8 and 10. In window 8 an initial 164 

std at the 11.20 cm was calculated, whereas for the exponential model A the accuracy 165 

is at the 5.13 m, which indicates that this model does not fit well to the dataset. Model 166 

E in the same window provides also a worse std compared to the initial values at the 167 

15.30 cm, whereas the exponential model D provides a std at the 7.70 cm, which can 168 

be considered as acceptable, despite the fact that it is at the almost equal to the input 169 

std. In window 10 the SLA has a std of 22.32 cm, while model E provides a prediction 170 

accuracy of 26.66 cm. Model A and Model D provide a better std than that of the initial 171 

one at the 8.65 cm and 8.64 cm respectively. The optimum prediction accuracy is 172 

achieved for window 3 and specifically for the polynomial model E at the 3.63 cm, 173 

which is smaller by 63% compared to the error of the input data, if one considers the 174 

std as an indication of the variability of the input field. Models A and D in the same 175 

window present also high prediction accuracy at the 4.47 cm and 3.71 cm respectively. 176 

The same behavior is also see for window 2 with a std at the 3.98 cm, 3.97 cm and 3.88 177 

cm for Models A, D and E, respectively. In window 4 the SLA has a std of 12.71 cm 178 



and the prediction accuracy reaches 7.05 cm, 6.66 cm and 7.09 for model A, D and E 179 

respectively. Window 5 presents slightly worse prediction accuracy at the 8.80 cm, 7.29 180 

cm and 7.89 cm. For window 1, polynomial model E presents the best results at the 181 

7.76 cm compared to the others optimum models A and D in the same window which 182 

provide a std at the 11.81 cm and 12.09 cm respectively. This worst performance by 183 

almost 4 cm is seen for window 6 as well, in which the exponential model A provides 184 

a std at the 8.80 cm, whereas exponential model D and polynomial model E give 12.18 185 

cm and 12.10 cm respectively. Windows 7 and 9 provide results with a std more than 186 

10 cm, but simultaneously better than that of initial ones. Specifically, window 7 187 

presents a std at the 12.38 cm, 12.45 cm and 12.10 cm and window 9 provides a std at 188 

the 11.90 cm, 11.88 cm and 15.28 cm for the three optimum models A, D and E 189 

respectively. From the above results it can be concluded that the highest std is provided 190 

by the prediction windows with good distribution of points, that act as the input data 191 

for the calculation of analytical covariance functions, around the prediction points. For 192 

example, window 5 presents for the exponential model A a std smaller by 40% 193 

compared to the corresponding model in window 9, for exponential model D a std 194 

smaller by 44% and for polynomial model E a std smaller by 54%.  195 

 196 

Table 2 197 

 198 

 In order to evaluate the three optimum analytical covariance function model and 199 

different scenarios for the distribution of the input data, a point was randomly selected 200 

for a Greek area close to coastline (see Figure 3). The above prediction strategy was 201 

carried out once more, utilizing three different approaches concerning the distribution 202 

of points which act as the input data for the calculation of the analytical covariance 203 

functions and the prediction. Table 3, presents the differences between the original 204 

SLAs and those predicted from the three alternative scenarios. For the first test, all 205 

points within window 4, where the estimation point is located, were chosen. For the 206 

second test a window of 2° (~220 km) around the estimation point was chosen and for 207 

the third test all points within the entire Mediterranean basin were taken into account. 208 

 209 

Figure 3 210 

 211 

Table 3 212 



 213 

From Table 3 it can be seen that model D provides the smallest differences for all three 214 

scenarios. Specifically, for Model A the best results are given from scenario 2 with a 215 

difference at 0.15 cm. Scenario 1 and 3 provide a difference at the 2.8 cm and 3.23 cm 216 

respectively. Exponential model D presents differences less at the 0.03 cm, 0.04 cm and 217 

0.09 cm level with the optimal results being achieved when the points located in the 218 

immediate vicinity of the prediction point are considered. Polynomial Model E gives 219 

also good results at the 0.14 cm, 0.09 cm and 0.35 cm. From the above we can conclude 220 

that scenario 2 gives the best results for this test case. This is due to the fact that only 221 

points around a small region of the prediction point were taken into account for the 222 

calculation of the analytical covariance functions, so that only the local variability of 223 

the LSA around the prediction point is considered, therefore within a radius of ~220 224 

km. In general, it will differ depending on the area extent around the prediction point 225 

and the amount of data within it, as well as on the quality of the sea level anomalies 226 

given proximity to land. Further statistical tests are needed for the bounds of the data 227 

used in the analytical function computation, as this case is based on the prediction of 228 

only one point.  229 

 230 

4. Conclusions 231 

A preliminary estimation of SLA values in the entire Mediterranean Sea was carried 232 

out using LSC and Cryosat-2 data, with the aim to investigate prediction errors in coast 233 

areas. Seven analytical covariance functions were evaluated and the three best of these, 234 

i.e., Models A, D and E, were then used for the re-estimation of SLA values at points 235 

within a distance of 15 km from the coastline. The study area was separated at 10 236 

windows each spanning 10° and locally estimated analytical covariance functions were 237 

calculated with the purpose to depict better the SLA variability compared to a global 238 

Mediterranean-wide covariance function. The higher prediction accuracy was achieved 239 

at the windows in which there are many data with good spatial distribution. In order to 240 

further investigate the performance of the optimum models, a point was randomly 241 

selected in the Aegean Sea close to the coastline. Then, three different scenarios of 242 

input data availability and distribution were evaluated. It was concluded that LSC 243 

provides high accuracy for the prediction of SLA values in areas with little or no data, 244 

especially close to the coastline, with an optimal selection radius of 220 km around the 245 



prediction point. The selection radius is based on the results of the present scenario set-246 

up and can vary in other areas given sea/land setup and data availability. In that case, a 247 

sub-cm prediction accuracy can be achieved, with obvious applications in extending 248 

the sea level altimetry records from open sea to coastal areas.  249 
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Table 1: Statistics of the original SLAs and differences with the predictions based on the various 301 

covariance function models. Units: [cm] 302 

  
Initial Model A Model B Model C Model D Model E Model F Model G 

min -100.0 -42.4 -44.0 -3345.1 -42.0 -42.1 -224.3 -146.8 

max 67.9 50.2 50.6 1740.0 50.2 50.2 218.2 135.4 

mean -11.8 0.0 -0.1 0.1 0.0 0.0 0.1 0.1 

std 17.1 3.7 3.8 60.6 3.7 3.7 8.4 5.4 

rms 20.8 3.7 3.8 60.6 3.7 3.7 8.4 5.4 
 

 303 

  304 



Table 2: Statistics of initial SLAs and differences with the estimated ones for all 10 windows (pts: 305 

points). Unit [cm] 306 

1 

 [87 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

6  

[70 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

min -47.6 -33.4 -35.1 -24.0 min -90.1 -27.1 -66.4 -64.9 

max 35.5 37.8 37.7 37.8 max 29.4 26.8 22.9 23.1 

mean -8.3 -4.3 -4.4 -1.1 mean -5.4 -1.8 1.0 1.2 

std 19.4 11.8 12.1 7.8 std 18.9 8.8 12.2 12.1 

rms 21.1 12.6 12.9 7.8 rms 19.6 9.0 12.2 12.2 

2  

[53 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

7 

 [41 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

min -38.6 -9.0 -9.2 -9.1 min -101.6 -68.9 -68.9 -64.9 

max -3.1 10.2 10.8 10.8 max -7.5 14.9 17.5 23.1 

mean -24.4 1.5 1.4 1.4 mean -34.6 -3.9 -3.7 1.2 

std 8.5 4.0 4.0 3.9 std 15.2 12.4 12.5 12.1 

rms 25.8 4.3 4.2 4.1 rms 37.8 13.0 13.0 12.2 

3 

 [70 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

8 

 [80 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

min -38.6 -10.5 -11.8 -11.3 min -49.8 
-

3593.5 
-34.6 -93.1 

max 9.1 8.1 9.0 7.6 max 7.9 9.2 11.3 13.8 

mean -16.2 0.6 0.3 0.2 mean -24.5 -129.4 -3.6 -6.2 

std 10.2 4.5 3.7 3.6 std 11.2 513.1 7.7 15.3 

rms 19.1 4.5 3.7 3.6 rms 27.0 529.2 8.5 16.5 

4 

 [172 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

9  

[29 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

min -73.1 -40.3 -22.9 -26.1 min -100.0 -11.3 -9.0 -93.1 

max 6.9 22.7 34.9 32.3 max 67.8 45.6 47.6 13.8 

mean -20.8 -2.1 -0.8 -0.9 mean -5.6 2.2 2.3 -6.2 

std 12.7 7.1 6.7 7.1 std 31.5 11.9 11.9 15.3 

rms 24.3 7.4 6.7 7.1 rms 32.0 12.1 12.1 16.5 

5  

[41 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

10 

 [91 pts] 
Initial 

Model 

A 

Model 

D 

Model 

E 

min -49.2 -27.1 -17.1 -17.8 min -42.6 -41.0 -40.9 -122.1 

max 23.2 26.8 20.0 19.5 max 70.7 24.1 24.0 41.0 

mean -17.7 -1.8 -0.2 0.4 mean 19.8 2.1 2.1 -1.7 

std 14.6 8.8 7.3 7.9 std 22.3 8.7 8.6 26.7 

rms 22.9 9.0 7.3 7.9 rms 29.8 8.9 8.9 26.7 

 307 

 308 

 309 

  310 



Table 3:  Differences between the original altimetry SLA value and the estimated ones for three 311 

alternative scenarios. Unit [cm] 312 

Point Code latitude (°) longitude (°) Initial SLA value (cm) 

7287 37.569032 26.689857 -26.80 

  
SLA 

estimation   

Difference SLA 

estimation   

Difference SLA 

estimation   

Difference 

(1) (2) (3) 

Model A -24.0 -2.8 -27.0 -0.2 -23.6 -3.2 

Model D -26.8 0.0 -26.8 0.0 -26.9 -0.1 

Model E -26.7 -0.1 -26.9 -0.1 -26.5 -0.4 

 313 

  314 



Figure 1: Cryosat-2 cycle 13 data distribution over the entire Mediterranean Sea 315 

Figure 2: Satellite altimetry data availability at a radius of 15 km (red) and 85 km (green) from 316 

the coastline within the 10°×10° windows 317 

Figure 3: Cryosat-2 data availability around the prediction point  318 
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