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ABSTRACT 

The exploitation of satellite altimetry data from past and 

current satellite missions is crucial to both oceanographic 

and geodetic applications. This work presents a 

correlation analysis of Jason-1, Jason-2 and CryoSat-2 

Sea Level Anomalies (SLAs) with global and regional 

climatic indexes that influence the ocean state. The 

Southern Oscillation Index, North Atlantic Oscillation 

index and Mediterranean Oscillation Index have been 

investigated, as representative of climate-change and 

seasonal forcing on the sea level. The raw data used are 

SLA values from Jason-1, Jason-2 (2002-2014) and 

CryoSat-2 (2010-2014) over the entire Mediterranean 

Basin. The possible correlation is investigated in seasonal 

and monthly scale, while a regional multiple regression 

and a principal component analysis between the SLAs 

and oscillation indexes is carried out. Finally, evidence 

of the sea level cyclo-stationarity in the Mediterranean 

Sea is deduced from the analysis of empirically derived 

covariance functions at monthly intervals from the 

available SLA data.  

 

1. INTRODUCTION 

Satellite altimetry data sets offer an abundance of, 

unprecedented in accuracy and resolution, data from past 

and current missions being is crucial to both 

oceanographic and geodetic applications. For 

oceanographic studies they allow the determination of 

Sea Level Anomalies (SLA), as deviations from a static 

mean sea level, while they are also fundamental for 

marine geoid and gravity determination. This work 

presents correlations of the SLA with global and regional 

climatic phenomena that influence the ocean state. Three 

such indexes have been investigated. The first one is the 

well-known Southern Oscillation Index (SOI) 

corresponding to the ocean response to El Niño/La Niña-

Southern Oscillation (ENSO) events [4]. The next index 

investigated is the North Atlantic Oscillation (NAO) 

index, which corresponds to the fluctuations in the 

difference of atmospheric pressure at sea level between 

the Icelandic low and the Azores high [18]. The last index 

investigated is the Mediterranean Oscillation Index 

(MOI), which refers to the fluctuations in the difference 

of atmospheric pressure at sea level between Algiers and 

Cairo [6]. In order to investigate possible correlations 

between climate-induced changes and altimetry-derived 

SLAs, the covariance functions of the latter are used as 

representative of the statistical characteristics of the sea 

state.  

 

2. DATA USED AND CORRECTIONS 

The raw data used are SLA values from Jason-1 and 

Jason-2 (Fig. 1-right) for a period of thirteen years (2002-

2014) and from CryoSat-2 (Fig.1-left) for a period of 5 

consecutive years 2010-2014 within the entire 

Mediterranean Basin (30° ≤ φ ≤ 50° and -10° ≤ λ ≤ 40° ). 

For Jason-1, data during the period from 15/1/2002 

(cycle 1) to 07/12/2008 (cycle 255) have been used 

resulting in a total number of 670703 observations. For 

Jason-2, data from 4/7/2008 (cycle 0) to 31/12/2014 

(cycle 239) have been used with a total number of 882197 

observations. Finally, Cryosat-2 data during the period 

from 14/07/2010 (cycle 4) to 31/12/2014 (cycle 61) 

resulting in a total number of 653131 SLA values. Each 

Jason-1 and Jason-2 cycle consists of 254 passes with 

almost 15% of those having available observations in the 

Mediterranean Sea within the satellite's period of 10 

days. For each year 36 cycles and ~92000 observations 

are available with a cross track spacing of 300km at the 

equator while CryoSat-2 has a 369 day orbit with a cross 

track spacing of 7.5 km at the equator and ~142000 

observations per year within the Mediterranean.  

 

The data have been downloaded from RADS server 

(DEOS Radar Altimetry Data System) in the form of 

SLAs relative to a zero-tide EGM2008 geoid, after 

applying all the necessary geophysical and instrumental 

corrections [2], [3], [17], [19]. The so-derived altiemtric 

SLAs has been used to investigate possible correlations 

with global and regional climatic phenomena.  For the 

present study, NAO, SOI and MOI data have been 

acquired from the Climate Research Unit of the 

University of East Anglia [5]. 
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Figure 1: Cryosat-2 (left) and Jason (right) data distribution over the Mediterranean Sea 

 

 

Figure 2: Jason SLA variances from the monthly empirical covariance functions fluctuations and correlation with NAO 

(top), MOI (middle) and SOI (bottom). 



 

 

Figure 3: Cryosat-2 SLA variances from the monthly empirical covariance functions fluctuations and correlation with 

MOI (top), SOI (middle) and NAO (bottom). 

 

3. COVARIANCES AS A TOOL FOR THE 

ANALYSIS OF SLA 

As pointed out in the introduction, the available SLAs 

will be used to calculate the variance as an indicator for 

the time variations of the SLA itself and this can be 

further correlated with large-scale regional and global 

climatic phenomena. The Tscherning and Rapp model 

was fitted to the variance of SLA derived from the 

available data for each satellite in monthly scale [24]. If 

each observation yi represent a small area Ai and yj 

represents an area Aj then the empirical covariance is: 

 

𝐶(𝜓) =
∑ 𝐴𝑖𝐴𝑗𝑦𝑖𝑦𝑗

∑ 𝐴𝑖𝐴𝑗
,  (1) 

 

with ψk-1 < ψij <ψk where ψ is the spherical distance. 

If the area is subdivided into small cells holding one 

observation each and Ai and Aj are assumed to be equal 

then Eq. 1 reduces to 

 

𝐶𝑘 =
∑ 𝑦𝑖𝑦𝑗

𝑁𝑘
,  (2) 

 

where Nk is the number of products yi yj in the kth interval 

[11]. From Eq. 2, the variance Co is equal to  

 

𝐶0 =
∑ 𝑦𝑖𝑦𝑗

𝑁
,  (3) 

 

In Fig. 2 below the Jason SLA variances from the 

monthly empirical covariance functions are presented 

along with the fluctuations of NAO (top), MOI (middle) 

and SOI (bottom). As it can be seen, MOI is the most 

proper measure of atmospheric forcing contribution to 

sea level variations in the Mediterranean. From Fig.2 and 

Fig.3 it is clear that positive phases in MOI are related to 

depressions in the SLA due to dryer conditions, as for 

example during the summer period of 2002-2004, 2006-

2008 and 2009-2014. The same behaviour can be seen for 

the negative MOI values, which result in increased sea 

levels as for example in early 2002, 2004-2007, 2010-

2011, 2013 and late 2014 for Cryosat-2 [16], [22], [23], 

[26], [29]. 

 

From Fig. 2 and Fig.3 it is also noticed that there is 

correlation between ENSO events and SLA variations in 

the Mediterranean with a phase offset of 3-6 months. The 

large negative values of the SOI index at the beginning 

of 2004 and 2005 are related to the large variance values 

which appear in spring of 2004 and in summer of 2005, 

respectively. The weak El Niño in March 2006 has a 

more rapid signature in the Mediterranean Sea with a 

significant increase in the SLA in June-July 2006, i.e., a 

time period of 5 months. The same behaviour is 

evidenced for the La Niña events too, as it can be seen 

for the moderate occurrences in late 2007-early 2008 and 

in late 2010 and early 2011. These result in significant 

depressions in the SLA variances, which reach their 

smallest values in summer 2008 and in spring 2011, i.e., 

with a time lag of ~3-5 months [1], [12], [21]. Due to the 

distance between the Equatorial Pacific, where ENSO 

events take place, and the Mediterranean SOI may not be 

the appropriate index to represent correlation between 

climate forcing and SLA variations. As a result, the NAO 

index is also examined. Positive NAO values are related 

to more immediate depressions in the Mediterranean Sea 

level, while negative ones to increased sea levels. 



 

Noticing are the large positive NAO values at the 

beginning of 2002, 2007, 2008, 2011 2012 which are 

immediately depicted as depressions in the 

Mediterranean SLA with a time lag of less one-two 

months. The same behaviour is found for most winter 

months, i.e., a good correlation, while for summer 

months the response of the Mediterranean sea level to 

variations in NAO is not so well depicted (2002, 2004, 

2006-2010 and 2012) [14], [15], [25], [27], [28], [29]. 

The response of sea to NAO variations indicates that 

NAO is more appropriate than SOI to describe the 

correlations between climate forcing and SLA variations. 

 

4. REGRESSION ANALYSIS 

A regional multiple regression analysis between Jason-1, 

Jason-2, and Cryosat-2 SLA variances with SOI, MOI 

and NAO indexes is carried out to model the response of 

the Mediterranean to these global and regional climatic 

phenomena. The b1 coefficient corresponds to MOI, b2 to 

SOI and b3 to NAO so that a multiple regression model 

is outlined as in (Eq. 4). 

 

𝐶0 = 𝑏1 × 𝑀𝑂𝐼 + 𝑏2 × 𝑆𝑂𝐼 +
𝑏3 × 𝑁𝐴𝑂  (4) 

 

The values of the indexes have been normalized, using 

the minmax values of NAO, in order to construct values 

to be coherent to each other. All indexes values have been 

normalised to [0,1] through Eq. 5. 

 

𝑥′ =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
,  (5) 

 

and then rescaled to [-1,1] through Eq. 6 

 

𝑥′ = 𝑥′ ∗ 2 − 1  (6) 

 

Monthly values for Co and the normalised monthly value 

of each index are used in order to determine the three 

regression coefficients. In the tables below the values of 

each coefficient are presented. 

 

Table 1: Regression coefficients for Cryosat-2 

Year b1 b2 b3 

2011 6.198 -3.055 1.128 

2012 6.839 0.365 0.285 

2013 8.564 1.182 1.586 

2014 11.102 -1.335 -1.708 

 

The correlation between SLA and the indexes depicted in 

Fig. 2 and Fig. 3 is similar to the values of the regression 

coefficients (Tab. 1 and Tab. 2). During all years, the 

coefficient of MOI takes the largest values, resulting in 

good correlation with the SLA. Especially, the SOI 

coefficient values are smaller, while during the years that 

the ENSO events are strong (2008, 2013) b2 is larger than 

b1 for the coefficients of Jason satellites. Finally, NAO 

coefficient b3 generally takes small values signalling that 

the atmospheric and climate conditions in the North 

Atlantic are not the dominant contributing factor for the 

Mediterranean Sea. The large value for b3 coefficient in 

2010 for Jason satellite can be attributed to the small 

value of b2 for the same year. 

 

Table 2: Regression coefficients for Jason satellites 

Sattelite  Year b1 b2 b3 

J
A

S
O

N
1

 

2002 6.198 -3.055 1.128 

2003 6.839 0.365 0.285 

2004 8.564 1.182 1.586 

2005 11.102 -1.335 -1.708 

2006 9.144 2.031 0.298 

2007 5.808 1.844 0.952 

2008 2.882 2.508 -1.371 

J
A

S
O

N
2

 

2009 5.234 3.032 0.209 

2010 6.143 0.666 3.407 

2011 2.464 3.362 -0.692 

2012 5.436 2.224 -0.958 

2013 -5.598 7.767 2.347 

2014 6.741 1.622 0.918 

 

 

5. CORRELATION ANALYSIS 

A correlation analysis is also carried out to model any 

seasonal correlation between SLA and these indexes. 

Four three-year periods (2002-2004, 2005-2007, 2008-

2010, and 2011-2013) have been studied. Additionally, a 

monthly correlation for these periods was derived as well 

given the correlation coefficient 𝜌𝑋,𝑌 determined as: 

 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝛸𝜎𝛶
,   (7) 

 

where cov is the covariance and σΧ is the standard 

deviation of X. The covariance cov is equal to  

 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝛸)(𝑌 −
𝜇𝑌)],   (8) 

 

where μX is the mean of X and E is the expectation. then 

Eq. 7 is derived as  

 

𝜌𝑋,𝑌 =
𝐸[(𝑋−𝜇𝛸)−(𝛶−𝜇𝑌)]

𝜎𝛸𝜎𝛶
.  (9) 

 

In this study X is the average variance of each three-year 

season of the period under study, μΧ the average of all 

seasons and 𝜎𝛸 the standard deviation while Y is the 

normalized index value for the same period.



 

 

 
Figure 4: Seasonal correlation between Jason-2 SLA and MOI (left), SOI (middle) and NAO (right) for years 2011-2013. 

 
Figure 5: Monthly correlation between CRYOSAT and Jason-2 SLA and MOI (left), SOI (middle) and NAO (right) for 

year 2014. 

 

In Fig. 4 correlation between seasons and indexes for a 

period of three years is depicted. Although a seasonal 

effect is not obvious, due to the fact that periods of three 

years are tested, it can be noticed that MOI and NAO are 

stronger correlated with SLA during the early months of 

each year (Winter-Spring). This is in line with the fact 

that NAO and MOI are well correlated and follow each 

other, especially during winter as has already depicted in 

Fig.2. On the other hand, the seasonal correlation 

between SOI and SLA depends on the strength of ENSO 

events and it is presented with a lag of 4-8 months. 

During the period under study in the figure above the 

ENSO events were weak and as a result, SLA and SOI 

are anti-correlated or they present weak correlation [7]. 

As already mentioned, a monthly correlation for these 

periods has been also examined between indexes and 

variances of both satellites. For monthly correlation in 

Eq. 9 X, Y are the monthly value of variance for each 

satellite and the normalised index monthly value.  

 

In Fig.5 correlation between Co of both satellites 

(CryoSat-2 and Jason-2) and indexes for the same year is 

depicted (2014). Although a strong effect is not obvious, 

due to the fact that only one year is tested, it can be 

noticed that MOI is stronger correlated with SLA during 

the Spring-Summer months. Additionally, smaller 

correlation can be found and in early months of the year 

with NAO index. This is in line with the fact that NAO 

and MOI are well correlated and follow each other. On 

the other hand, the correlation between SOI and SLA 

depends on the strength of ENSO events and it is 

presented with a lag of 4-8 months. Finally, a very good 

agreement between correlations of both satellites is 

depicted for the same months in all cases. 

 

6. PRINCIPAL COMPONENT ANALYSIS 

In the last step of this study a Principal Component 

Analysis (PCA) between the variances of both satellites 

and oscillation indexes is performed. PCA or Empirical 

Orthogonal Function (EOF) is a method for analyzing the 

variability of a field. The method estimates EOF loading 

patterns and their variation on time, the PCs  [8], [9], [10]. 

Data are organized in a matrix D (n x p) where n is the 

number of observations and p is the number of variables. 

In this study, D contains the monthly variances of each 

satellite for all years. The data matrix is decomposed by 

singular value decomposition through  

 

𝐃 = 𝐔𝐒𝐕𝐓,  (10) 

 

where U and V are (n x n) and (p x p) matrices that satisfy 

UTU=I and VTV=I, and S is a matrix of rank r ≤ min(n 

,p) whose diagonal contains the singular values √𝜆𝑖 , 

i=1,…,r. The PC time series are obtained from the 

column vectors of the matrix P as  



 

 

𝐏 = 𝐔𝐒.  (11) 

 

PCA is usually performed to time-center data and this is 

achieved by removing the mean value from each column 

of D. As a result the diagonal elements of matrix S are 

the variances explained by each PC. The PCs are ordered 

in terms of the percentage of the total variance explained. 

In the figures below the principal components of each 

satellite are depicted [20]. 

 

Fig. 6 presents the principal components for both 

satellites ordered in percentage of total data variance. For 

CryoSat-2 satellite the first and second principal 

component that contain ~70 and ~22% of the data 

variance are clearly distinguishable from the rest PCs. 

The third and fourth component contain less than 10 % 

of the data while the rest components are close to 0%. In 

the case of Jason satellites the first two components 

contain almost the 70% of the total variance while the 

third PC is almost 10%. The fourth and fifth component 

are close to 5% while the rest components are smaller. In 

order to investigate the low frequency signal and examine 

any possible contribution of global and regional climatic 

phenomena the PCs time series of each satellite and 

normalised indexes have been plotted [13]. 

 

 
Figure 6: Jason (bottom) and CryoSat-2 (top) principal 

components. 

 

In Fig.7 the first four PCs of CryoSat-2 satellite and the 

first six PCs of Jason satellites are depicted. In both cases 

some correlation between MOI and PCs of satellites can 

be seen. For CryoSat-2 satellite fourth PC is related to the 

MOI values while for Jason satellite the third PC follows 

the scaled MOI series. These two PCs are almost ~10% 

of the total variance as it can be seen in Fig. 6 

representing seasonal and climatic signal modes. This 

correlation and agreement between MOI and SLA 

variances PCs signal that MOI is the dominant 

contributing factor for the Mediterranean Sea.   

 

7. CONCLUSIONS  

An analytical outline of the use of satellite altimetry data 

from the exact repeat missions of Jason-1, Jason-2 and 

CryoSat-2 satellites, in order to model the correlation 

between global and regional climatic phenomena, has 

been presented. The data analysed referred to records for 

a period of thirteen consecutive years (2002-2014, Jason 

satellites and 2010-2014, CryoSat-2) for the entire 

Mediterranean basin. A regional multiple regression, a 

correlation analysis and a Principal Component analysis 

between sea level anomalies and the SOI, MOI and NAO 

indexes was carried out to model any possible correlation 

between the Mediterranean sea level and these global and 

regional climatic phenomena. From the analysis of the 

empirical covariance functions of SLA, it was noticed 

that there is a significant annual variation, which is 

evident for the entire period under study with high values 

in January, lower values in spring due to reduced rainfall 

increasing values as summer progress due to snow melt 

and the thermal expansion in July-August. Finally the 

variance values decrease again in fall and start increasing 

in November due to higher level of precipitation.  

 

Through regional multiple regression analysis between 

sea level anomalies and the SOI, MOI and NAO, it is 

obvious that the response of the Mediterranean Sea is 

more predominant with MOI. During years with strong 

ENSO events the regression coefficient for SOI index 

takes the biggest values. From the correlation analysis 

carried out, it was found that although a strong effect is 

not obvious, due to the fact that only one year is tested, it 

can be noticed that MOI is stronger correlated with SLA 

during the Spring-Summer months of each year. 

Additionally, smaller correlation can be found and in 

early months of the year with NAO index. This is in line 

with the fact that NAO and MOI are well correlated and 

follow each other. On the other hand, the correlation 

between SOI and SLA depends on the strength of ENSO 

events and it is presented with a lag of 4-8 months. 

Finally from the PCA analysis it was noticed that SLA 

PCs represent seasonal and climatic signal modes. 

Comparing the PCs with the indexes time series it can be 

concluded that Jason fourth and CryoSat-2 third principal 

component is related to the MOI index. Finally, the weak 

response of the SLA in the Mediterranean Sea level 

during summer signals that atmospheric forcing is not the 

contributing factor to the steric sea level variations in the 

Mediterranean during that period. 

 



 

 

 
Figure 7: Principal components time series and scaled indexes for CryoSat-2 (top) and Jason (bottom). 
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