

→ 5th INTERNATIONAL GOCE USER WORKSHOP

GOCE/GRACE GGM evaluation over Greece with GPS/Leveling and gravity data

G.S. Vergos, V.D. Grigoriadis, I.N. Tziavos, D.A. Natsiopoulos, E.A. Tzanou

Availability of several GOCE/GRACE GGMs for the Earth's potential

Availability of several GOCE/GRACE GGMs for the Earth's potential

- TIM (R1, R2, R3, R4, R5)
- DIR (R1, R2, R3, R4, R5)
- GOCO (01s, 02s, 03s)
- EIGEN*s/c (51c, 6s/c, 6s/c2, 6c3stat)
- o ITG-GOCE02s, GOGRA02s/04s, JYY_GOCE02s/04s

Availability of several GOCE/GRACE GGMs for the Earth's potential

- TIM (R1, R2, R3, R4, R5)
- DIR (R1, R2, R3, R4, R5)
- o GOCO (01s, 02s, 03s)
- EIGEN*s/c (51c, 6s/c, 6s/c2, 6c3stat)
- o ITG-GOCE02s, GOGRA02s/04s, JYY_GOCE02s/04s

Validation of the GOCE/GRACE GGMs and Wo determination

Availability of several GOCE/GRACE GGMs for the Earth's potential

- o TIM (R1, R2, R3, R4, R5)
- DIR (R1, R2, R3, R4, R5)
- GOCO (01s, 02s, 03s)
- EIGEN*s/c (51c, 6s/c, 6s/c2, 6c3stat)
- ITG-GOCE02s, GOGRA02s/04s, JYY GOCE02s/04s

Validation of the GOCE/GRACE GGMs and Wo determination

External validation over Greece with collocated GPS/Leveling BMs and gravity anomaly data

METHODOLOGY

Combined GGM differences to n_{max}=216,000

$$\Delta N = N^{GPS/Lev} - N^{i} \Big|_{2}^{n_{1}} - N^{EGM2008} \Big|_{n_{1}+1}^{2160} - N^{RTM} - N_{o}$$

 N^{GOCE} evaluation of GOCE/GRACE GGMs every 1 degree

NRTM from a 3" DTM over Greece

METHODOLOGY

Combined GGM differences to n_{max} =216,000

$$\Delta N = N^{GPS/Lev} - N^{i} \Big|_{2}^{n_{1}} - N^{EGM2008} \Big|_{n_{1}+1}^{2160} - N^{RTM} - N_{o}$$

 $N^{GOCE} \Big|_{2}^{n_1}$ evaluation of GOCE/GRACE GGMs every 1 degree

NRTM from a 3" DTM over Greece

- Mean Tide to Tide Free conversion for orthometric heights
- GGM Zero Tide to Tide Free when necessary
- All computations in GRS80
- N_o relative to the IERS W_o of 62636856.0 m²/s²

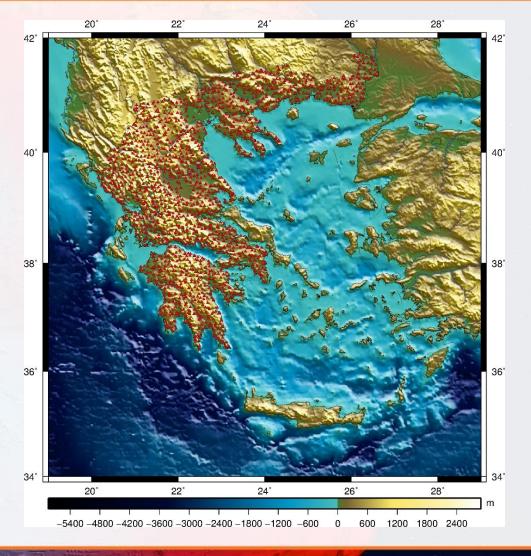
METHODOLOGY

Combined GGM differences to n_{max}=216,000

$$\Delta g_{res} = \Delta g - \Delta g^{GOCE} \Big|_{2}^{n_{1}} - \Delta g^{EGM2008} \Big|_{n_{1}+1}^{2160} - \Delta g^{RTM}$$

 $\Delta g^{GOCE}\Big|_{2}^{n_1}$ evaluation of GOCE/GRACE GGMs every 1 degree

 Δg^{RTM} from a 3" DTM over Greece

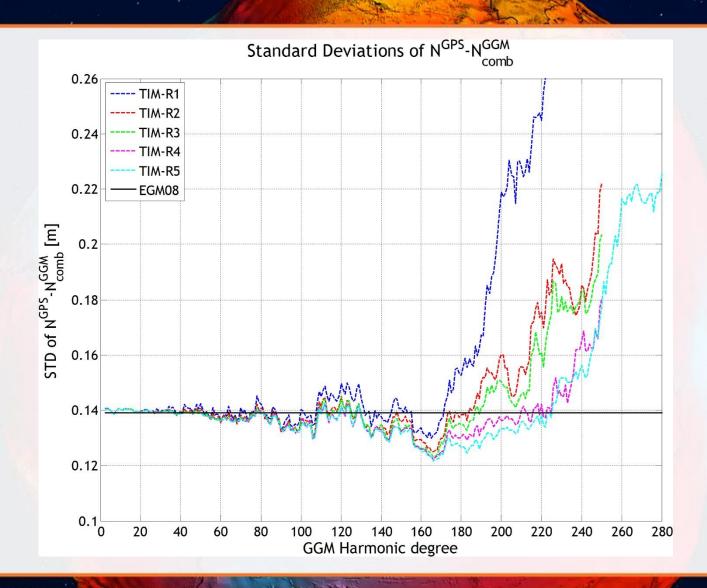

- Free-air gravity anomalies
- o GRS80/IGSN71
- Clean database after LSC-based blunder detection and removal

LOCAL DATA

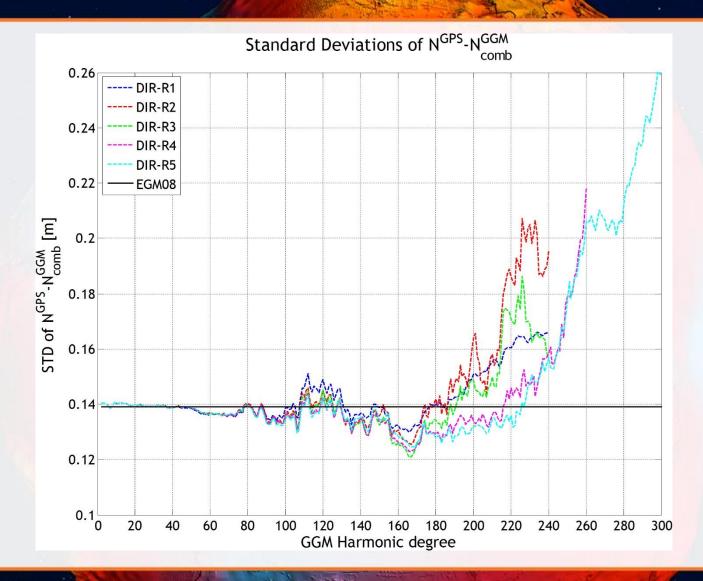
1542 collocated GPS/Leveling observations

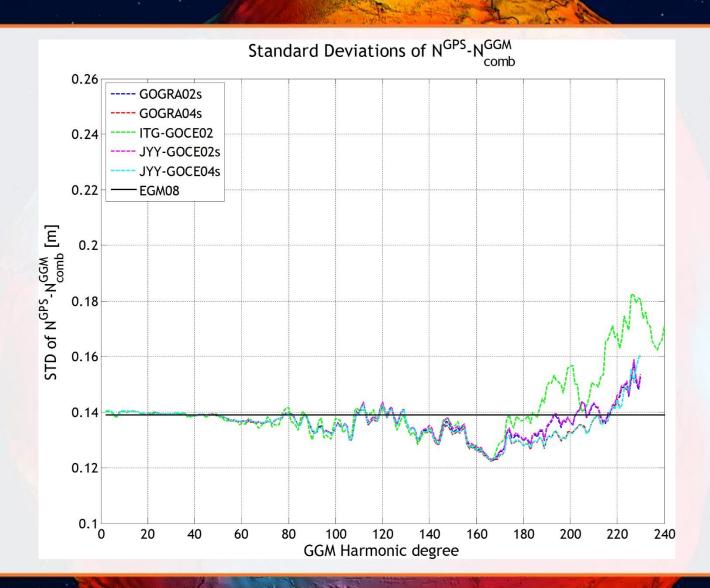


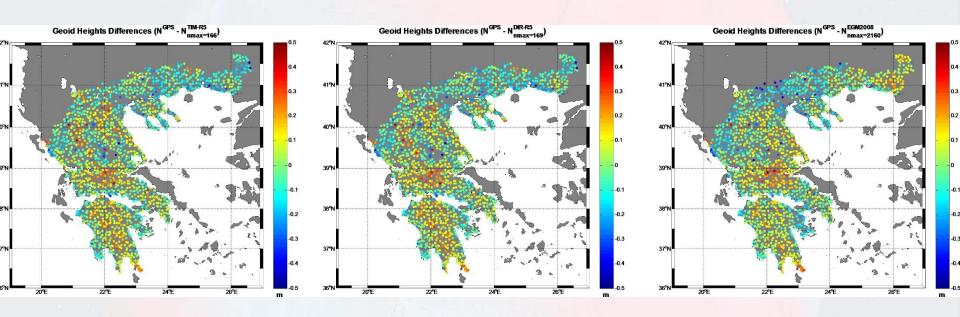
LOCAL DATA



294777 free-air gravity anomalies

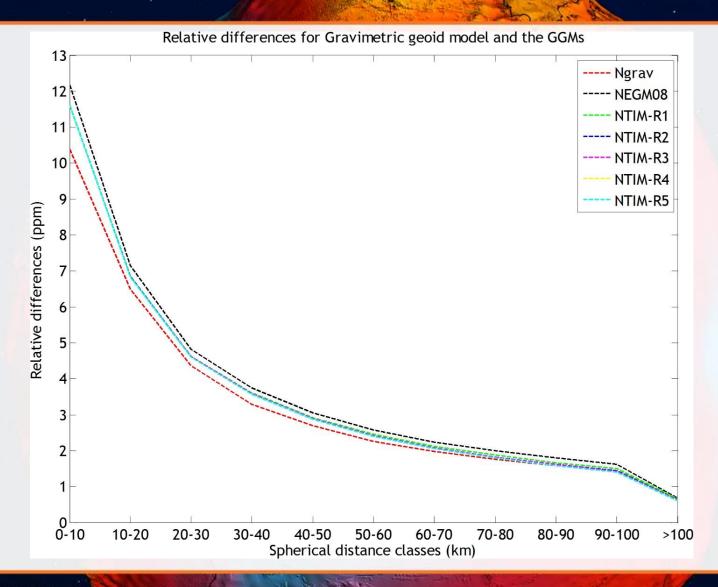





Geoid height differences between GOCE/GRACE GGMs and GPS/Lev BMs.

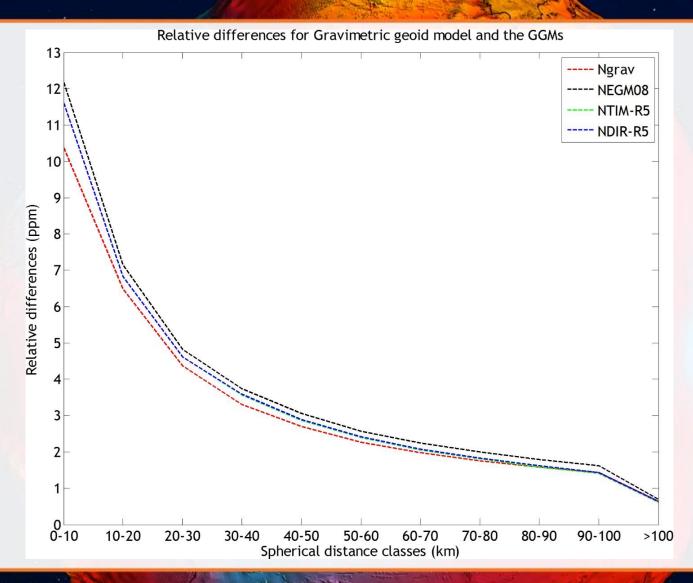
Unit [m]

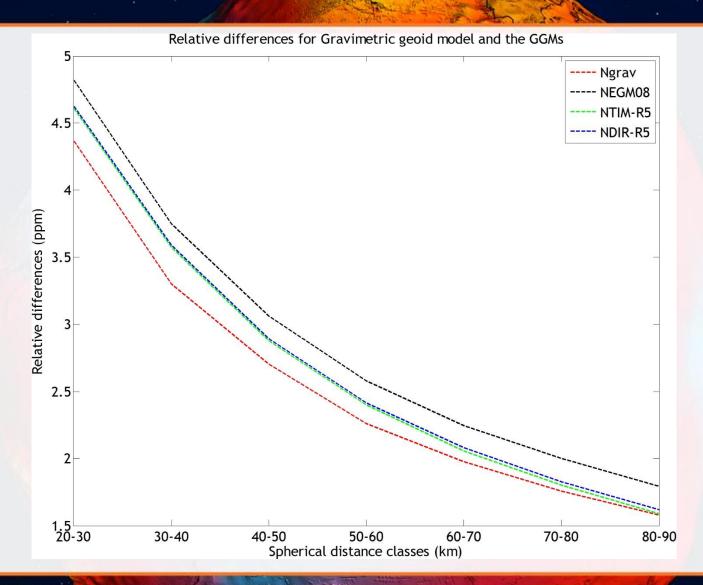
GGM	d/o	range	mean	std
EGM2008	2190	0.954	-0.416	±0.139
DIR-R5	169+EGM08	0.885	-0.384	±0.123
TIM-R5	166+EGM08	0.890	-0.389	±0.121
GOCO03s	167+EGM08	0.922	-0.389	±0.122
ITG-GOCE02s	166+EGM08	0.901	-0.383	±0.122
GOGRA04s	167+EGM08	0.889	-0.389	±0.122
JYY-GOCE04s	167+EGM08	0.887	-0.382	±0.122

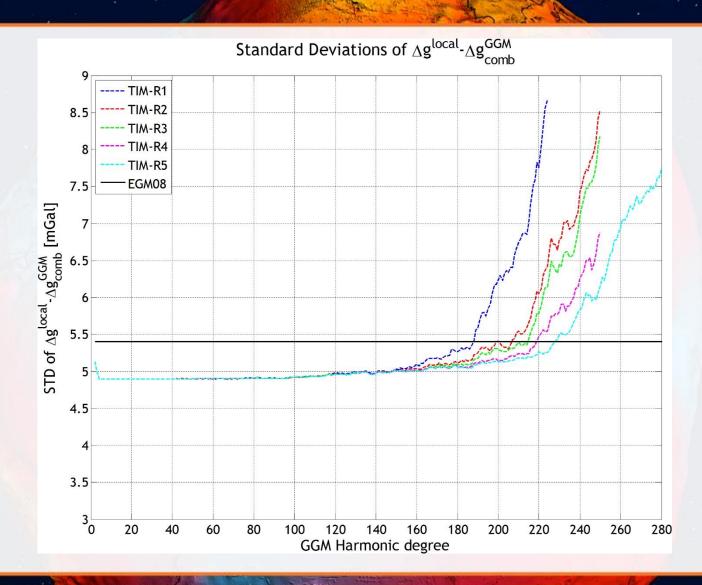


TIM-R5, DIR-R5 and EGM2008 Geoid height differences at the GPS/Lev BMs



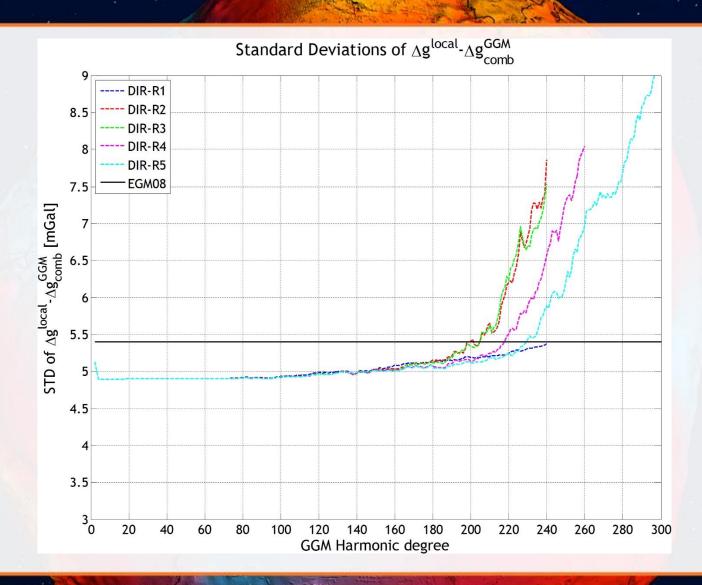


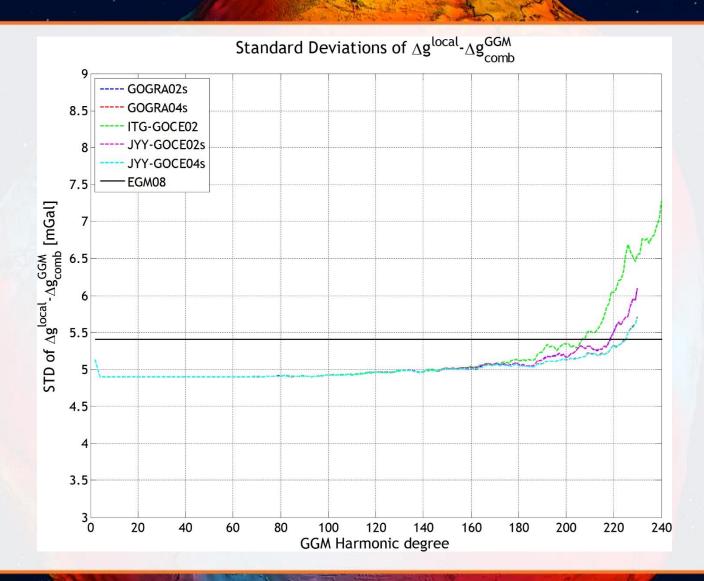


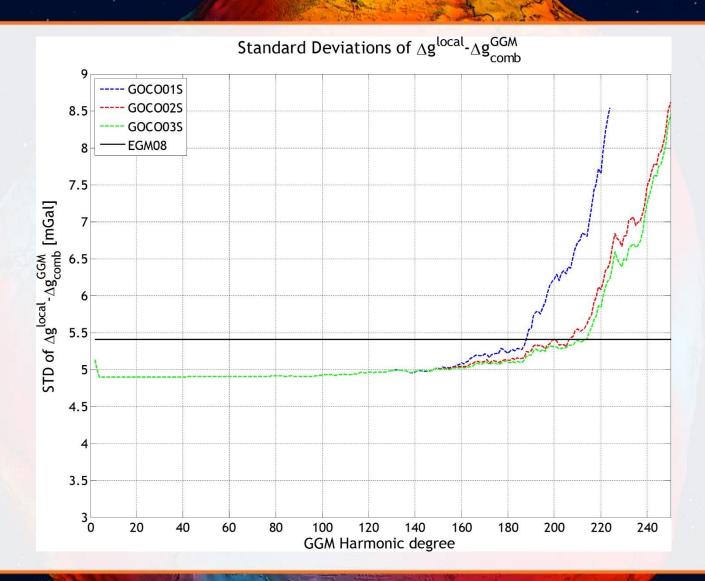


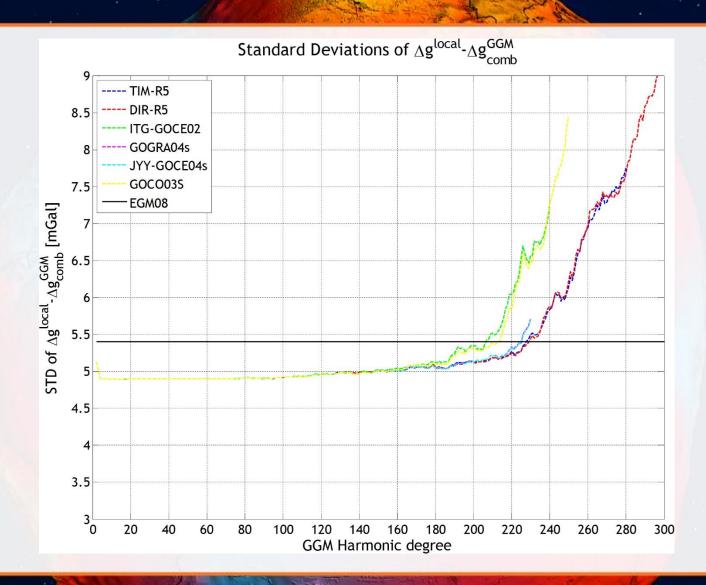
Relative accuracy of geoid height differences. Unit [ppm]

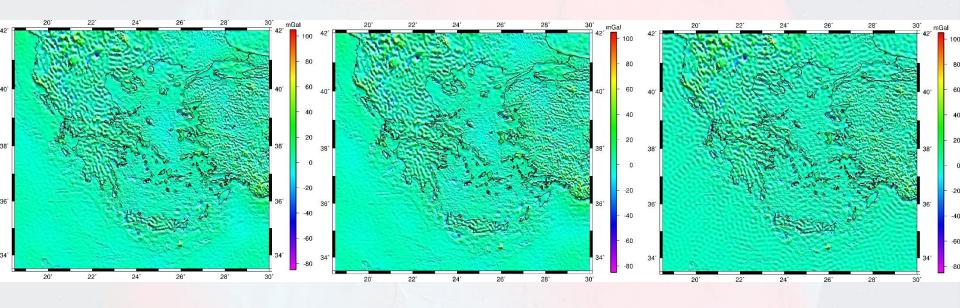
GGM	EGM2008	TIM-R5	DIR-R5	Ngrav
0-10 km	12.18	11.61	11.61	10.38
10-20 km	7.15	6.83	6.84	6.49
20-30 km	4.82	4.61	4.62	4.36
30-40 km	3.75	3.57	3.59	3.30
40-50 km	3.06	2.88	2.89	2.70
50-60 km	2.58	2.39	2.42	2.26
60-70 km	2.25	2.06	2.08	1.97
70-80 km	2.00	1.80	1.83	1.76
80-90 km	1.79	1.59	1.62	1.58
90-100 km	1.61	1.41	1.43	1.43
>100 km	0.69	0.61	0.63	0.64










Gravity anomaly differences between GOCE/GRACE GGMs and local data.

Unit [mGal]

GGM	d/o	range	mean	std
EGM2008	2190	184.10	0.57	±5.32
DIR-R5	214+EGM08	179.06	0.39	±4.89
TIM-R5	212+EGM08	179.16	0.45	±4.89
GOCO03s	193+EGM08	177.38	0.45	±4.89
ITG-GOCE02s	193+EGM08	177.85	0.54	±4.89
GOGRA04s	194+EGM08	177.98	0.62	±4.89
JYY-GOCE04s	194+EGM08	178.16	0.64	±4.89



TIM-R5, DIR-R5 and EGM2008 gravity anomaly differences with the local data

Radially averaged PSD vs spatial frequency

Basic physical model (Helmert ortho heights):

$$H_{i}^{helm} = \frac{W_{o}^{LVD} - W_{i}}{g_{i} + 0.0424 \cdot 10^{-5} H_{i}^{helm}} = \frac{W_{o}^{LVD} - W_{i}}{\overline{g}_{i}}$$

LS estimate of LVD's zero-height level

$$\hat{W}_{o}^{LVD} = \frac{\sum_{i} p_{i}(y_{i})}{\sum_{i} p_{i}} \longrightarrow \text{'weights'}$$

Un-weighted LS estimate & combined GOCE/GRACE GGMs

o EGM2008 (2190)

$$\hat{W}_{o}^{LVD} = 62636860.07 \pm 0.02 \,\mathrm{m}^2 \,/\, s^2$$

o DIR-R5 (169)+EGM08

$$\hat{W}_o^{LVD} = 62636859.76 \pm 0.02 \,\mathrm{m}^2 \,/\, s^2$$

o TIM-R5 (166)+EGM08

$$\hat{W}_{o}^{LVD} = 62636859.81 \pm 0.02 \,\mathrm{m}^2 / s^2$$

GOGRA04s (167)+EGM08

$$\hat{W}_{o}^{LVD} = 62636859.82 \pm 0.02 \,\mathrm{m}^2 / s^2$$

Un-weighted LS estimate & combined GOCE/GRACE GGMs

o EGM2008 (2190)

$$\hat{W}_{o}^{LVD} = 62636860.07 \pm 0.02 \,\mathrm{m}^2 \,/\, s^2$$

DIR-R5 (169)+EGM08

$$\delta \hat{W}_o^{LVD} \approx 3.1 cm$$

o TIM-R5 (166)+EGM08

$$\delta \hat{W}_o^{LVD} \approx 2.6 \, cm$$

GOGRA04s (167)+EGM08

$$\delta \hat{W}_o^{LVD} \approx 2.5 cm$$

Un-weighted LS estimate & combined GOCE/GRACE GGMs

DIR-R5 (169)+EGM08

$$\hat{W}_o^{LVD} = 62636859.76 \pm 0.02 \,\mathrm{m}^2 \,/\, s^2$$

o TIM-R5 (166)+EGM08

$$\hat{W}_{o}^{LVD} = 62636859.81 \pm 0.02 \,\mathrm{m}^2 \, / \, s^2$$

o GOGRA04s (167)+EGM08

$$\hat{W}_{o}^{LVD} = 62636859.82 \pm 0.02 \,\mathrm{m}^2 \,/\, s^2$$

Great consistency for the GOCE/GRACE GGMs in Wolve

$$\delta \hat{W}_{O}^{LVD} \approx 0.1 - 0.6 cm$$

 GOCE/GRACE GGM validation over Greece with GPS/Leveling and gravity data, with a remark on Wo determination

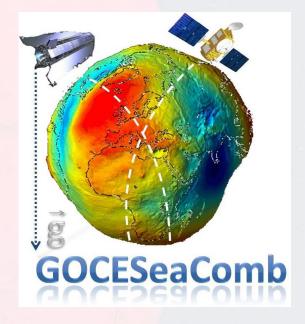
- GOCE/GRACE GGM validation over Greece with GPS/Leveling and gravity data, with a remark on Wo determination
- \circ The latest releases are better than EGM2008 as much as 1.8 cm (1 σ), reducing also the mean by 3 cm and the range by 7 cm

- GOCE/GRACE GGM validation over Greece with GPS/Leveling and gravity data, with a remark on Wo determination
- \circ The latest releases are better than EGM2008 as much as 1.8 cm (1 σ), reducing also the mean by 3 cm and the range by 7 cm
- DIR-R5 and TIM-R5 are better up to d/o 230, with significant improvements in the spectral range between d/o 185-230

- GOCE/GRACE GGM validation over Greece with GPS/Leveling and gravity data, with a remark on Wo determination
- \circ The latest releases are better than EGM2008 as much as 1.8 cm (1 σ), reducing also the mean by 3 cm and the range by 7 cm
- DIR-R5 and TIM-R5 are better up to d/o 230, with significant improvements in the spectral range between d/o 185-230
- \circ In terms of the gravity anomalies they are better than EGM2008 by 0.5 mGal (1 σ), reducing also the mean by 0.2 mGal and the range by 7 mGal

- GOCE/GRACE GGM validation over Greece with GPS/Leveling and gravity data, with a remark on Wo determination
- \circ The latest releases are better than EGM2008 as much as 1.8 cm (1 σ), reducing also the mean by 3 cm and the range by 7 cm
- DIR-R5 and TIM-R5 are better up to d/o 230, with significant improvements in the spectral range between d/o 185-230
- o In terms of the gravity anomalies they are better than EGM2008 by 0.5 mGal (1σ), reducing also the mean by 0.2 mGal and the range by 7 mGal
- \hat{\mathbb{W}}_o^{LVD} from GOCE GGMs is very robust with \hat{\mathbb{W}}_o^{LVD} between the various GGMs at 0.1-0.6 cm

Thank you for your attention



ACKNOWLEDGEMENT

GOCESeaComb Project

Funded by the European Space Agency (ESA) Scientific Experiment Development Program (PRODEX) within the General Secretariat for Research & Technology (GSRT) invitation to the Greek scientific community in response to the 1st PRODEX Programme Call for Greece.

