
DOT and SLA stationary and time-varying analytical covariance functions for LSC-based heterogeneous data combination 
  G.S. Vergos, D.A Natsiopoulos, I.N. Tziavos, V.N Grigoriadis and E.A TzanouG.S. Vergos, D.A Natsiopoulos, I.N. Tziavos, V.N Grigoriadis and E.A Tzanou  

Department of Geodesy and Surveying, Aristotle University of Thessaloniki, Univ. Box 440, 54 124, GreeceDepartment of Geodesy and Surveying, Aristotle University of Thessaloniki, Univ. Box 440, 54 124, Greece 

EGU General Assembly, Session G1.1 – “Recent Developments in Geodetic Theory”, EGU2014-1040, B764  

27 April - May 02 2014, Vienna – Austria  

ObjectivesObjectives  

This work presents some news ideas and results on the determina-
tion of analytical covariance functions and subsequently full variance-
covariance matrices for the DOT in the Mediterranean Sea. 

Along track records of the DOT have been used to represent as close 
as possible the time-variable nature of the time-variable nature of 
the non-stationary DOT signal after estimating time varying analytical 
covariance functions 

The estimation of the analytical covariance functions is performed us-
ing 2nd  and 3rd order Markov models. The same analysis have been 
carried out for the time-varying functions. 

A kernel model similar to that of the disturbing potential a.k.a de-
pendent on a series of Legendre polynomials has been tested for an 
entire window both for the three models of DOT and for the whole 
model of Rio and Hernadez. 

The goal is to come to some conclusions on the stationary and time-
varying DOT spectral characteristics based on the empirically derived 
properties such as the variance and correlation length and determine 
analytical models to be used later for prediction with LSC. 

Introduction and ProblemsIntroduction and Problems 

With the availability of an abundance of earth observation data from satellite altimetry 
missions as well as those from the GOCE satellite, monitoring of the sea level variations 
and the determination of functionals of the Earth’s gravity field are gaining increased 
importance.  

One of the main issues of heterogeneous data combination with stochastic methods is 
the availability of appropriate data and error covariance and cross-covariance matrices.  

The latter needs to be determined for all input data within an LSC-based combination 
scheme based on some analytical global covariance function models, which intercon-
nect observations and signals to be predicted.  

Given the availability of altimetric sea surface heights, GOCE observations of the second
-order derivatives of the Earth’s potential, geoid height variations from GRACE and ma-
rine gravity anomalies, one can employ all such available information within LSC to esti-
mate the mean dynamic ocean topography (DOT) as well as its dynamic, i.e., time-
varying part.  

Data used and correctionsData used and corrections 

The focus is based on three different models of DOT (2D case). The first is the model of 
Rio and Hernadez (2004) the second is the model of Rio et al. (2007) and the third one 
is a combined (GOCE, GRACE and altimetry) model developed in the frame of GOCESea-
Comb. 

The Rio and Hernadez model is an MDT computed over the entire world from altimetry, 
in situ measurements, and a geoid model.  

From available data only the values of the MDT in the Mediterranean Sea have been 
used. These are 15557 values in 1/8o grid spacing and are bounded between 30.75° ≤ φ 
≤  45.625° and -5° ≤  λ ≤  35.75°. 

The Rio et al. model is an MDT model of the Mediterranean Sea computed from al-
timetric data, in-situ measurements and a general circulation model. These are 32435 
values, spanning the entire Mediterranean Sea and bounded between 30° ≤ φ ≤ 50° and 
-10° ≤ λ ≤ 40°.  

The combined model was derived from a combination of a GGM and the DTU2010 MSS 
model. The MDT was derived as a deviation from the MSS model, which was then fil-
tered in order to treat high-frequencies, as well as the omission and commission errors. 
In this part of the work the one to be used refers to boxcar filtering function for a cut-off 
wavelength of λ=200 km.  

 

 

The combined model consists of 55639 values in 5' x 5' grid spacing that span the entire 
Mediterranean Sea bounded between 30° ≤ φ ≤ 50°  and  -10° ≤ λ ≤ 40°. 

For the time-varying MDT analytical covariance functions, a 1D case was studied using 
pass 196 from JASON-1 and pass 444 form ENVISAT. 

 

Figure 1:MDTs from the Rio and Hernadez model (left top), Rio et al. model (left bottom) and 
the combined GOCE/GRACE model (right). 

Figure 2: ENVISAT pass 444 (top) and 
Jason pass 196 (bottom). 

Mathematical models and Covariance estimationMathematical models and Covariance estimation  

First the empirical covariance functions have been estimated for the three DOT models, the variance 
Co the correlation length  ξ  were determined. 

 
Then, various analytical covariance function models have been investigated in order to determine the 
one that provides the overall best fit to the empirical model as well as the optimal results, in terms of 
prediction accuracy. To this extend, various order exponential models have been studied, along with 
second and third order Gauss- Markov ones.  
 
Apart from planar models, a spherical one based on Legendre polynomial expansion, simulating the 
Tscherning & Rapp model used to model the analytical covariance function of the disturbing potential 
was used. 

  
 

In the above models, ψ denotes the spherical distance, ξ the correlation length, r 
the planar distance and σ(● )2 the variance of quantity (● ) which is the investiga-
tion (SLA or DOT). The rest, are parameters to be determined, so that the analytical 
model will fit the empirical one. Note, that for all models a mixed equations adjust-
ment scheme was used in order to determine the necessary parameters for each 
model, based on the empirical values. 

Figure 3: Empirical and analytical covariance functions 
for all types of DOT models 

Statistics of Rio and Hernadez (cm) 

 min max mean std 

ζ -17.183 24.357 0.854 ±6.851 

Prediction errors with LSC for the various covariance models (cm) 

MODEL A -0.944 2.220 0.002 ±0.159 

MODEL B -1.021 2.099 0.001 ±0.156 

MODEL C -1.372 1.442 -0.001 ±0.149 

MODEL D -6.867 4.630 -0.004 ±0.938 

MODEL E -1.140 1.797 0.000 ±0.152 

MODEL F -0.988 0.842 -0.002 ±0.087 

MODEL G -0.988 0.842 -0.002 ±0.087 

MODEL H -1.542 0.852 -0.002 ±0.085 

 The exponential model F and the two Gauss-Markov models give the best results with the standard de-
viation of the prediction errors at the ±0.085 cm.  

 For MODEL I when the whole region is concerned (Ia), there are some edge effects in the eastern part 
of the area.   
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Rio et al. (cm) 

ζ -20.600 44.300 4.379 ±10.988 

Prediction errors with LSC for the various covariance models (cm) 

MODEL A -1.699 1.101 0.000 ±0.052 

MODEL B -1.700 1.010 0.000 ±0.052 

MODEL C -0.984 1.436 0.000 ±0.052 

MODEL D -8.141 4.890 0.003 ±0.892 

MODEL E -0.990 0.700 0.000 ±0.043 

MODEL F -0.300 0.246 0.000 ±0.038 

MODEL G -0.305 0.246 0.000 ±0.038 

MODEL H -0.300 0.245 0.000 ±0.038 

Combined model (window case) (cm) 

ζ -19.650 13.350 1.723 ±5.123 

Prediction errors with LSC for the various covariance models (cm) 

MODEL A -1.482 0.776 -0.001 ±0.090 

MODEL B -1.519 1.050 -0.006 ±0.106 

MODEL C -1.421 0.641 -0.001 ±0.086 

MODEL D -9.840 30.067 -0.065 ±1.850 

MODEL E -1.433 0.856 -0.001 ±0.090 

MODEL F -0.296 0.411 0.000 ±0.036 

MODEL G -0.296 0.410 0.000 ±0.036 

MODEL H -0.350 0.434 0.000 ±0.031 

Prediction has been carried out by omitting every second point where values of ζ 
are available using the rest for the estimation. This was performed for the two DOT 
models of Rio, for all available data, while two window cases have been tested also.  
 
Due to the big dimensions of the matrices, prediction for the model of Rio et al. has 
been made using the method of singular value decomposition for the inversion of 
big matrices. This method has also been applied to model D for Rio and Hernadez 
and to the combined model (window case) due to problems in the inversion of the 
matrix (ill-posed matrices). In the window cases for the model of Rio and Hernadez 
the total points were 2397 and the values predicted were 1199 while for the com-
bined model the total points were 4857 and the values predicted were 2479.  

MODEL I (a) -13.169 0.932 -0.007 ±1.556 

MODEL I (b) -0.526 0.932 0.193 ±0.055 

Rio and Hernadez (window case) (cm) 

ζ -9.200 10.600 1.125 ±5.557 

Figure 4: DOT from Rio et Hernadez (1), DOT from  
the combined model (2), differences between Rio 
and Hernadez and MODEL I(a) (3), differences be-
tween Rio and Hernadez and MODEL I(b) (4). 

TimeTime--varying DOT and prevarying DOT and pre--processing processing   

Data about the time-varying DOT (Δζ) topography that have been de-
rived from the combination of altimetric records (SLAs) of Envisat and 
Jason1 and the Rio et al. model of DOT . 

 

 

Both passes, Envisat 444 and Jason 196, have been selected based on 
the following criteria: a) both passes shall be in almost the same area 
b) the passes shall be long and span the entire basin in the north-south 
or south-north direction (ascending or descending pass respectively), 
c) there shall be no or little land intrusion from isles or islands in the  
pass SLA records, d) the data record shall be as consistent as possible 
throughout the satellite data record for the period of study, i.e., miss-
ing records and/or voids should be kept to a minimum.  

From all available data those of year 2009 have been selected. Jason-1 
period is 10 days (actually 9.9 days) and Envisat one is 35 days. As a re-
sult Jason-1 data consist of 34 cycles and a total amount of 5849 point 
values. On the other hand, Envisat data consist of 10 cycles and 1206 
point values.  

To estimate Δζ, ζ values should be calculated in points where SLA data 
are available. MDT was interpolated at the along-track locations by LSC 
using the covariance functions already determined. Moreover, the next 
step of pre-processing was to have the same number of points per cy-
cle for Envisat and the same number of points per cycle Jason-1.  

ζ SSH N ζΔ    ζ SLA ζΔ  

cycle total points cycle total points cycle total points 

19 139 34 147 48 228 

20 148 35 146 49 166 

21 153 36 151 50 194 

22 151 37 163 51 230 

23 147 38 231 52 152 

24 153 39 204 53 147 

27 123 40 141 54 138 

28 131 41 201 55 226 

29 201 42 230   

30 153 44 227   

31 117 45 226   

32 146 46 163   

33 149 47 227   

cycle total points 

76 132 

77 123 

78 123 

79 118 

80 102 

81 123 

82 121 

83 123 

84 119 

85 122 

Cycles and total points per cycle for ENVISAT  

The big differences in the number of points in Jason-1 
cycles are due to the fact that some cycles have SLA 
values over northern Italy.  

From all available points only those over the same lo-
cation, within Δφ=0.01° and Δλ=0.01°, have been se-
lected, since they refer to the same locations.  

As a result the number of collocated points for Envisat  
passes was 93 (total points=93*10=930) and 129 
points for Jason-1 (all points north of Italy have been 
excluded-total points=129*37=4773).  

Models A to H have been used to determine analytical 
covariance functions for the time-varying DOT. In all 
models spherical distance ψ has been replaced by time 
t.  

Figure 5: Empirical and analytical covariance functions for  
time-varying DOT. 

Statistics of Envisat Δζ 

 min max mean std 

Δζ -27.1 26.4 3.4 ±10.3 

MODEL A -8.200 10.497 0.165 ±2.299 

MODEL B -8.200 10.497 0.165 ±2.299 

MODEL C -8.200 10.497 0.165 ±2.299 

MODEL D -19.971 19.694 0.129 ±6.329 

MODEL E -8.200 10.497 0.165 ±2.299 

MODEL F -22.018 14.438 0.139 ±5.521 

MODEL G -8.200 10.497 0.165 ±2.299 

MODEL H -8.200 10.497 0.165 ±2.299 

Statistics of Jason-1 Δζ 

 min max mean std 

Δζ -36.024 32.367 5.325 ±11.161 

MODEL A -19.032 11.051 0.010 ±2.033 

MODEL B -19.032 11.051 0.010 ±2.033 

MODEL C -19.032 11.051 0.010 ±2.033 

MODEL D -30.693 27.789 0.027 ±9.025 

MODEL E -19.032 11.051 0.010 ±2.033 

MODEL F -16.479 25.407 0.015 ±4.606 

MODEL G -19.032 11.051 0.010 ±2.033 

MODEL H -16.479 25.407 0.015 ±4.606 

Table 1: Statistics from stationary DOT models and prediction 
errors from all models. 

Table 2: Statistics of the time-varying DOT models  and 
prediction errors with the various analytical models. 
[Units: mm] 

For the Envisat-derived Δζ, all models provide good fit to 
the empirical values. This is logical as the form of empirical 
covariance function is close to this of an exponential 
model and as a result all models fit well to the empirical. 
On the other hand, for Jason-1, the miss-fit of the models 
in the biggest part of the equation is obvious due to the 
badly scaled covariance function.  

Prediction has been carried out by omitting every second 
point where values of Δζ are available using the rest for 
the prediction.  

Prediction has been made for two models of Δζ for all 
available data. Due to the badly scaled and close to singu-
lar matrices, prediction for the model of Jason-1 with all 
models has been made using the method of singular value 
decomposition for the inversion of matrices.  

This method has also been applied to model D and model 
F for Envisat model due to problems in the inversion of the 
matrix (ill-posed matrices).  

Cycles and total points per cycle for JASON-1  

ConclusionsConclusions  

 For the time-varying DOT, all models manage to 
give small errors, of the order of 2 mm.  

 This can be attributed to the existence of many 
data in the region where predictions need to be 
made and to the small differences on the time of 
nearby observations.  

  On the other hand, the small errors with std of the 
order of a few mm indicate that the determined 
analytical covariance functions perform well, so 
that the estimates determined are rigorous and ro-
bust.  

 For the stationary DOT, all analytical models, ex-
cept model D, present very small errors as well, of 
the order of 1-2  mm. 

 The small errors with std of the order of a few mm 
indicate that the determined analytical covariance 
functions perform well, so that the estimates de-
termined are rigorous and robust.  

 This is shown in the predicted field with minimum values of the order of -13 cm compared to –9 cm for the original DOT.  

 On the other hand when the entire window used is 0.5° smaller (b) (19.5°-20°) blunders are removed and the standard deviation of the field is 1.5 cm 
smaller. 

 The next step refers to the determination of 2D time-varying DOT models for the entire Mediterranean through dedicated spatio-temporal covariance 
function for the entire duration of the ENVISAT and JASON-1 missions.    


