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ABSTRACT 

Monitoring and understanding of sea level change at 

various spatial and temporal scales have been the focus 

of many studies during the past decades. The advent of 

satellite altimetry and the realization of the 

GRACE/GOCE missions offer new opportunities for the 

estimation of sea level trends with heterogeneous data 

combination methods. In related studies, even though 

the data combination and processing strategies have 

been carried out carefully with proper control, error 

propagation through analytical data variance-covariance 

matrices has been given little attention. The latter is of 

importance since it can provide reliable estimates of the 

output signal error. This is especially evident in e.g., 

least-squares collocation (LSC), where analytical 

covariance function models for the disturbing potential, 

its second order derivatives and geoid heights are used. 

Analytical covariance models are not available for 

altimetric sea level anomalies making their 

incorporation in LSC-based combination schemes 

problematic. This work presents some new ideas and 

results on the determination of analytical covariance 

functions for the sea level anomalies in the 

Mediterranean Sea. The focus is based on single-

mission altimetry data from ENVISAT for the entire 

duration of the mission (2002-2011). The estimation of 

the analytical covariance functions is performed using 

2
nd

 and 3
rd

 order Gauss-Markov models, exponential 

ones, as well as a kernel similar to that of the disturbing 

potential. The analysis is carried out in order to come to 

some conclusions on the SLA spectral characteristics 

based on empirically derived properties.  

 

Keywords: Satellite altimetry, covariance functions, 

SLA, DOT, empirical and analytical models. 

 

1. INTRODUCTION 

Variations in the sea level and changes at global and 

regional scales are triggered by a number of factors that 

take place within system Earth. These natural processes 

originate from variations in the physical properties of 

the ocean water and from water mass transport between 

the Earth's oceans, continents and the atmosphere. Both 

steric and non-steric (eustatic) sea level variations and 

their proper modeling play a crucial role not only to 

oceanographic but geodetic applications as well. The 

former are due to variations in salinity and temperature, 

and the latter due to river run-off, glacial and ice caps 

mass variations and atmospheric water vapor changes 

[3]. Their proper modeling in terms of data combination 

and error propagation is essential in marine geoid 

modeling and Dynamic Ocean Topography (DOT) 

determination [9]. This is especially evident during the 

last decade with the advent of the gravity-field 

dedicated satellite missions of GRACE and GOCE, 

which allow the combined use of gravity field 

parameters with satellite altimetry observations to study 

the Earth’s oceans [1, 17]. 

 

Since the early 80's, altimeters on-board satellites 

resulted in the availability of sea surface height 

measurements with global coverage, homogeneous 

accuracy and resolution. Satellite altimetry and the 

multitude of unprecedented in accuracy and resolution 

observations that it allows precise determinations of sea 

level variations without the limitations of ground-based 

observations [2]. Nowadays, the available 20-year 

record of observations for the sea level together with 

GRACE/GOCE observables offer new opportunities for 

the estimation of sea level trends at regional and global 

scales and the identification of seasonal signals. In such 

studies, even though the data combination and 

processing strategies have been carried out carefully 

with proper control [6, 7], a point that has been given 

little attention is error propagation through analytical 

data variance-covariance matrices. Recent examples of 

studies, where such attempts have been made for the 

determination of the DOT can be found in [8] and [10] 

for the region between Greenland and the UK. Rigorous 

modeling of the signal and error characteristics is of 

significant importance in heterogeneous data 

combination studies, since error propagation can 

provide reliable estimates of the output signal error. 

This becomes a necessity in the optimal estimator used 

in physical geodesy, i.e., least-squares collocation 

(LSC), where the full variance-covariance matrices are 

needed for the input data and signals to be predicted 

[16, 17]. When the aim is the determination of sea level 

variations or the DOT from a combination of altimetric 
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and GRACE/GOCE observations, one can determine 

analytical covariance functions for the disturbing 

potential, its second order derivatives and geoid heights 

through one of the standard models, as, e.g., that of [13]. 

On the other hand, no global or regional analytical 

models are available for altimetric sea level anomalies 

(SLAs) making their incorporation in LSC-based 

combination schemes problematic. The main objective 

of this work is on the proper modeling of available SLA 

data in order to determine empirical and analytical 

covariance functions, so that they will subsequently 

used for prediction with LSC. From the available 

analytical covariance functions the full variance-

covariance matrices of the functional under study, i.e., 

the SLA or the DOT can be derived. The focus is based 

on single-mission altimetry data from ENVISAT, in the 

Mediterranean Sea, for the entire duration of the 

satellite mission (2002-2011). Both along-track (1D) 

and cross-track (2D) cases are studied interpreting the 

empirical and modeled characteristics of the covariance 

functions. For the former, the signal characteristics of 

the sea level anomalies have been studied at monthly, 

seasonal and annual scales. The estimation of the 

analytical covariance functions is performed using 2
nd

 

and 3
rd

 order Gauss-Markov models, simple exponential 

ones as well as a kernel similar to that of the disturbing 

potential, a.k.a., dependent on a series of Legendre 

polynomials. From that analysis, which is carried out for 

the entire Mediterranean, conclusions on the SLA 

spectral characteristics based on empirically derived 

properties such as the variance and correlation length 

are derived, while some conclusions on the annual SLA 

variability are drawn as well. 

 

2. DATA AND ANALYTICAL MODELS 

As already mentioned, the present study is focused in 

the entire Mediterranean basin, within the region 

bounded between 30
o
 ≤ φ ≤ 50

o
 and -10

o
 ≤ λ ≤ 40

o
. In 

this region, the statistical characteristics of the SLA 

have been studied using altimetric observations from 

ENVISAT for the entire duration of its mission (2002-

2011). The ENVISAT data were acquired from the 

RADS system [12] as SLAs relative to the EGM2008 

geopotential model. All geophysical and instrumental 

corrections have been applied, using the default models 

proposed by the RADS system, so that corrected SLAs 

would be available. Given the data availability, two 

main sets of tests have been carried out for the 

estimation of SLA analytical covariance functions. The 

first one refers to the use of a single pass of the satellite, 

in order to study the stochastic characteristics of the 

SLA in the along-track (1D) direction. For that case, the 

longest pass available in the Mediterranean Sea (pass 

444) has been chosen (see Fig. 1) in order to utilize as 

many as possible SLA observations without any 

interruptions from dry-land areas (islands, isles, etc.). 

The second test refers to the use of the entire set of 

ENVISAT passes for the Mediterranean Sea, so that the 

SLA variability will be studied in both the along- and 

cross-track (2D) direction (see Fig. 1).  

 

 
Figure 1: ENVISAT pass 444 used for the along-track 

(1D) SLA covariance function study (top) and 

distribution of ENVISAT passes (bottom) in the 

Mediterranean Sea (2D case).  

 

In order to study the statistical characteristics of the 

SLA, either in the 1D and the 2D case, first the 

empirical covariance models were derived. Given a set 

of observations for the functional C    under 

consideration, in our case the SLA (h
SLA

), the empirical 

covariances for a given spherical distance ψ is [4, 12]:  

   SLA SLA SLA SLA

i j i j ψ
h ,h ,ψ M h hC , (1) 

where, M denotes the mean value operator and i, j the 

SLA observations at two points in the area under study 

with a distance ψ. Employing Eq. 1, the empirical 

covariance functions for pass 444 have been estimated 

for all available ENVISAT cycles. Given the 35-day 

repeat period of ENVISAT, it is implied that for each 

year ~11 covariance functions have been determined. 

An example is presented in Fig. 2 (top), where the 

empirical covariance functions for pass 444 for the year 

2005 are depicted. From that figure it is interesting to 

notice the variability of the variance through the epochs 

of its year, with high values in January, lower values in 

spring due to reduced rainfall, increasing values as 

summer progress due to snow melt and the thermal 

expansion in July-August. Finally, the variance values 

decrease again in fall and start increasing in November 

due to higher level of precipitation.  This evolution 

through time is shown in the Fig. 2 (bottom), where the 

variances, i.e., the covariance for spherical distance 

ψ=0, between 2002 and 2010 are presented. It is clear



 

  
Figure 2: ENVISAT pass 444 empirical covariance functions for 2005 (left) and variance variability for the period 

under study (right). 

 

that cyclo-stationarity is evidenced, showing the 

repeated behavior of the SLA variations with epochs. 

The abnormal behavior is correlated with ENSO events, 

e.g., overall low in January 2006 and overall high in 

August 2008. It is interesting to notice that the low in 

January 2006 is a response to the La-Niña event in 

September 2005, i.e., with a time lag of 4-5 months, 

while the high in August 2008 is a response to the 

negative Southern Oscillation Index (SOI) in April 

2008.  

 

In order to determine some analytical model for the 

SLA covariance function, various options have been 

tested. The first class of analytical models refers to 

exponential ones, where six choices were examined, 

with varying number of parameters to be determined, as 

follows:  

SLA SLA

bψ

h h
(ψ ) αeC , (2) 

SLA SLA

bψ dψ

h h
(ψ ) αe ce C ,  (3)

 2

SLA SLA

ψ b

c

h h
(ψ ) αe

 
 
 C ,  (4)

 2

SLA SLA

bψ

h h
(ψ ) αeC ,  (5)

 
SLA SLA

bψ

h h
(ψ ) αe cos(ωψ )C ,  (6)

 
1SLA SLA

bψ

h h
(ψ ) α( bψ )e C .  (7)

 In Eqs. 2-7, a, b and c denote parameters to be 

determined so that the analytical covariance model will 

fit the empirical one. Note that all above models are a 

function of the spherical distance between the points 

where SLA observations exist. Those six models will be 

denoted as MODEL A, B, …, F, respectively in the 

sequel. The other class of analytical models tested refers 

to 2
nd

 and 3
rd

 order Gauss-Markov ones (MODEL G and 

H herein) as outlined in Eqs. 8 and 9 respectively, where 

D is the characteristic distance, r is the planar distance 

and 2
SLAh

σ the SLA variance [5, 15]  

 
 2 1SLA SLA SLA

r
D

h h h

r
r σ e

D

 
  

 
C ,  (8)

 

 
 

2
2

2
1

3
SLA SLA SLA

r
D

h h h

r r
r σ e

D D

 
   

 
C .  (9) 

Finally, an analytical model similar to the one used by 

[14] for the disturbing potential has been tested. In 

complete analogy, we can define the covariance 

function of the SLA or the DOT as (MODEL I herein):

 
     2

0

SLA SLA

SLA

n nh h
n

ψ σ h P cosψ




C , (10) 

where  2 SLA

nσ h are the degree variances of the SLA and 

Pn(cosψ) the Legendre polynomials. Note that in all 

cases the analytical covariance function models should 

agree to the empirical values available for the area 

under study in order to represent the local statistical 

characteristics of the signal under consideration, i.e., the 

SLA in this case. For the description of the behavior of 

the degree variances given in Eq. 10 a 3
rd

 degree 

Butterworth filter is used so that the degree variances of 

the SLA are given as [10]: 

 
3 3

2 12 1

3 3 3 3

2 1

SLA n

n

k k
σ h b s

k n k n

 
  

  
. (11) 

The factors b, k1, k2 and s are determined so that the 

analytic model fits the empirical values describing the 

statistical characteristics of the functional in the area 

under study and more precisely the variance and the 

correlation length. Note that the scale factor s
n+1

 in Eq. 

11 resembles the (RB/R)
2(n+1) 

one in the Tscherning and 

Rapp analytical covariance model of the anomalous 

potential. As far as the study of the statistical 

characteristics of the DOT is concerned, from the 

various models available the one chosen in the present 

study is that by [14]. 

 

3. SLA ANALYTICAL MODELS AND 

ACCURACY 

All aforementioned models have been evaluated first in 

the 1D case, where the empirical covariance function 

for ENVISAT pass 444 was estimated for the entire 

duration of the mission (2002-2011). The results 



 

presented below refer to a single month of the satellite 

data (August 2005) in order to demonstrate the 

performance of the analytical models. Within the 

estimation strategy followed, first the empirical 

covariance function is determined, then the analytical 

models are fitted to the empirical values and finally, 

prediction is carried out with LSC in order to evaluate 

the accuracy that they offer. Three tests are performed, 

the first one by omitting the first 20 records of the track 

and using the rest for the prediction (TEST 1), the 

second by omitting the last 20 points (TEST 2) and the 

third by omitting every second point (TEST 3) and 

using the rest for the prediction. The tests cases are also 

depicted with the boxes in Fig. 3, where the SLA for 

August 2005 and the sub-satellite points for pass 444 

are displayed. In Fig. 3 the empirical covariance 

function of the SLA is depicted with red dots, along 

with the fitted analytical models (Models A, B, …, F, I). 

From Fig. 3, the exponential models seem to provide a 

good fit to the empirical values, as the Gauss-Markov 

models do. The only model that seems to miss-model 

the empirical one is the one based on the expansion of 

Legendre polynomials (MODEL I), probably due to the 

limited number of observations and the limited extent of 

the area under study. Tab. 1 summarizes the statistics of 

the ENVISAT pass 444 for August 2005 along with the 

prediction errors from the various analytical models for 

all three test cases (TEST A: prediction in the first 20 

points from the rest, TEST B: prediction in the last 20 

points from the rest and TEST C: prediction every 

second point from the rest). As far as TEST A is 

concerned, the exponential model E and the second 

order Gauss-Markov models provide the best results 

with a standard deviation of the prediction errors at the 

±8.7 cm. It is noticing that between the two, the Gauss-

Markov model provides a mean value smaller 7 cm 

compared to the exponential one, which is positive in 

terms of the estimation of unbiased errors. The 

parameters estimated for model E were a=90.47 cm
2
 

and b=0.015 1/
o
, while for the 2

nd
 order Gauss-Markov 

2 287 39SLAh
σ . cm and D=115.32 km (see Eqs. 6 and 8). 

The same behavior is evidenced from the results for 

TEST B, where the exponential models E and F along 

with the second order Gauss-Markov model gave the 

most rigorous prediction errors, with a std at the ±5.5-

5.9 cm level. From these two tests, which simulate the 

case where SLA data from altimetry need to be 

predicted close to the coastline, the performance of the 

third order Gauss-Markov and that of the expansion in 

Legendre polynomials present the largest errors. Almost 

all analytical models perform well in TEST C giving 

small errors of the order of a few cm (±1.95-2.18 cm) 

and mean values at the sub-mm level. MODEL I does 

not perform well again giving a standard error of ±4.5 

cm. The improvement is due to the existence of more 

data in the region where predictions need to be made. 

 

As far as the 2D case is concerned, two tests have been 

carried out. One using a complete cycle of the 

ENVISAT data for the entire Mediterranean Sea (all 

passes included, see Fig. 1 bottom). This consisted of a
 

 
Figure 3: ENVISAT SLA along pass 444 (left) and empirical and analytical model covariance functions (right).  
 

total number of 11870 SLA observations, for which 

analytical covariance functions were determined and 

predictions were made by omitting every second point 

and using the rest to estimate the SLA in these locations 

(TEST D in the sequel). The second test refers to using 

the entire set of ENVISAT data, to predict SLA at an 

inner window where no observations are available. The 

inner window was selected for the area bounded 

between (32
o
 ≤ φ ≤ 36

o
 and 15

o
 ≤ λ ≤ 20

o
). This 

resembles the case when no information is available in a



 

Table 1: Statistics of the ENVISAT pass 444 SLAs and 

prediction errors from the various analytical models for 

all test cases investigated. Unit: [cm]. 

 min  max  mean  std  

SLA -19.9  23.5  7.4  ±8.5  

TEST A 

MODEL A -29.07  3.74  -10.06  ±8.87  

MODEL B -18.60  5.07  -4.02  ±6.10  

MODEL C -27.75  4.46  -8.53  ±8.75  

MODEL E -27.66  4.53  -8.63  ±8.67  

MODEL F -22.22  9.53  -0.84  ±9.39  

MODEL G -18.97  11.47  1.69  ±8.70  

MODEL H -20.76  22.48  7.27  ±12.88  

MODEL I -91.3  -2.70  -35.65  ±32.5  

TEST B 

MODEL A  -13.39  5.95  -6.13  ±5.54  

MODEL B  -128.22  -10.89  -78.97  ±35.41  

MODEL C  -13.55  6.57  -5.99  ±5.78  

MODEL E  -13.74  6.38  -6.23  ±5.78  

MODEL F  -10.57  8.86  -3.15  ±5.54  

MODEL G  -10.19  10.42  -2.24  ±5.94  

MODEL H  -15.40  5.79  -7.73  ±6.31  

MODEL I  22.36  79.54  30.72  ±28.59  

TEST C 

MODEL A -7.61  5.08  -0.11  ±1.99  

MODEL B -7.57  5.10  -0.06  ±1.88  

MODEL C -7.52  5.09  -0.10  ±1.95  

MODEL D -86.59  17.39  -1.43  ±12.47  

MODEL E -7.55  5.09  -0.10  ±1.95  

MODEL F -8.98  5.27  -0.08  ±2.07  

MODEL G -9.00  5.27  -0.07  ±2.07  

MODEL H -9.94  5.29  -0.08  ±2.18  

MODEL I -11.58  10.37  -0.08  ±4.57  

 

specific area and LSC is used for the prediction. The 

validation is performed through comparisons with the 

available observations (TEST E in the sequel). Once 

again, the empirical covariance functions have been 

estimated and the analytical models were fitted, carrying 

out predictions using these fitted values. Fig. 4 presents 

the empirical and analytical (for Models G & H) 

covariance functions for the case investigated in TEST 

D. The parameters estimated for the 2
nd

 order Gauss-

Markov were 2 285 28SLAh
σ . cm and D=268.11 km in the 

case of TEST D, and 2 243 81SLAh
σ . cm and D=34.81 km 

in the case of TEST E.  

 

Table 2, summarizes the results for the prediction errors 

estimated in TEST D & TEST E for a selection of the 

available analytical models. From Tab. 2 the 

outperformance of the exponential model E and that of 

the Gauss-Markov models are evident, with a std at the 

±3.6-4.5 cm level and a mean which is close to zero. 

The range of the Gauss-Markov models is larger by ~40 

cm compared to that of the exponential models, 

signaling that in wider areas, planar analytical models 

cannot provide rigorous estimates. In TEST E, where an 

entire window within the study area is missing, all 

models give disappointing results, since the smallest std 

of the prediction errors is ±7.39 cm (MODEL E) when 

the std of the original field is ±7.50 cm. This is due to 

the fact that the area where predictions are made is quite 

large (4
o
5

o
), so that the rest of the data cannot describe 

the SLA variability. The same analysis has been carried 

out for the DOT model of Rio (see Fig. 4, right). From 

the analysis carried out, MODEL E and MODEL F 

provided once again the best results with a prediction 

error at the ±4.56 cm level and a mean value of the 

order of 0.5-1 cm. 

 

Table 2: Statistics of prediction errors from the various 

analytical models for TEST D and TEST E. Unit: [cm]. 

 min  max  mean  std  

TEST D 

SLA -50.90 55.40 7.33 ±11.49 

MODEL A -34.88  29.31  -0.03  ±3.65  

MODEL B -34.88  29.37  -0.03  ±3.65  

MODEL E -34.89  29.39  -0.03  ±3.65  

MODEL F -47.95  55.15  -0.02  ±4.57  

MODEL G -47.97  55.18  -0.02  ±4.57  

MODEL H -80.37  89.49  -0.02  ±5.77  

TEST E 

SLA -44.80 19.80 0.04 ±7.50 

MODEL A -30.91  29.50  0.19  ±7.40  

MODEL E -30.91  29.50  0.19  ±7.39  

MODEL G -403.55  234.2  1.03  ±34.63  

 

 
Figure 4: ENVISAT empirical (red dots) and analytical model covariance functions for TEST D (left) and the DOT 

(right). 



 

4. CONCLUSIONS  

A comprehensive analysis on the determination of 

analytical covariance functions for the SLA has been 

presented, employing various models, both planar and 

spherical ones. The tests performed refer to both along-

track (1D) and cross-track (2D) cases, where LSC has 

been used to estimate the SLA either for prediction 

close to the coastline and to fill-in gaps. From all tests 

carried out, the exponential model (Model E) and the 2
nd

 

order Gauss-Markov one provided the most rigorous 

results in terms of prediction accuracy (std and mean 

value of prediction errors), which were at the few cm 

level. For all cases, the parameters of the analytical 

covariance models have been determined so that they fit 

the empirical values. The results acquired with the 

model based on the expansion in Legendre polynomials 

were disappointing, and always inferior to the simpler 

exponential and Gauss-Markov ones, which is a subject 

that needs to be investigated further. Some key issues 

may relate to the scaling factor used, which is estimated 

within the fit to the empirical values. Future work will 

be directed to the inclusion of time as a variable in the 

employed analytical models in order to model the 

variability of SLA with time with LSC.  
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