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Abstract. Local geoid determination is traditionally 
carried out on land and at sea areas using gravity 
anomaly and altimetry data. This determination can 
be aided and improved by the data of missions such 
as GOCE. In order to assess the performance of the 
combination of heterogeneous data for local geoid 
determination, simulated data for the area of the 
central Mediterranean Sea are analyzed. These data 
include gravity anomaly, altimetry, and GOCE 
observations processed with the space-wise 
approach. 

The results show that GOCE data improve the 
results for areas not well covered with other data 
types, while also accounting for any long wavelength 
errors of the adopted reference model. Even when the 
ground gravity data are dense, data from GOCE 
improve the error standard deviation and eliminate 
biases.  

At sea, the altimetry data give the dominant geoid 
information. However the geoid accuracy is sensitive 
to orbit calibration errors and the unmodelled mean 
sea surface topography. If such effects are present the 
GOCE data can account for them.  
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1 Introduction 

GOCE (Gravity field and steady-state Ocean 
Circulation Explorer) is a satellite mission (ESA, 
1999) designed by ESA (European Space Agency), 
which will be launched in 2008. The goal of this 
mission is the determination of the stationary part of 
the gravity field to a high degree of accuracy and 
spatial resolution. The main instrument on board the 
satellite will be the “gradiometer”, composed by six 
accelerometers, and measuring the second derivatives 
of the potential (the full tensor) along the satellite 

orbit (the so-called gradients). Additional 
information on the gravity field will be derived from 
the tracking of the satellite orbit, by means of a GPS 
receiver, and the accelerometers measurements of 
the non-gravitational forces.. 

Three different approaches will be applied for the 
determination of the global gravity field models from 
GOCE: the direct approach (Bruinsma et al., 2004), 
the time-wise approach (Pail et al., 2005) and the 
space-wise approach (Migliaccio et al., 2004).  

In a previous study (Maggi et al, 2007), the 
contribution of GOCE filtered data from the space-
wise approach and a GOCE geo-potential model, 
were evaluated for local geoid determination in a 
combination scheme with terrestrial data employing 
least squares collocation in a simulation. It was 
found that the benefit from the GOCE long wave-
length information will be very significant. The 
present paper, refers to a larger region incorporating 
satellite altimetry data as well. No topographic 
information (Arabelos and Tscherning, 1990) or 
bathymetric information (Vergos and Sideris, 2003) 
will be used for data reduction, even though this is 
possible with real data. 

2  Simulation of data 

In the frame of the EGG-C (European GOCE 
Gravity Consortium) (Balmino, 2001) activities for 
the preparation of the GOCE mission, full simulation 
solutions are computed so that methodology and 
software efficiency are ensured (Migliaccio et al., 
2006). The latest simulated data set available by 
EGG-C is used and the data are processed. These 
data include 60 days (note that at least 1 year is 
expected) of: gradients with in-flight calibration 
noise (including instrumental errors, satellite errors, 
etc.), signal simulated from EGM96 (Lemoine et al, 
1998), orbit positions and velocities, common mode 
accelerations, rotations and attitude information. The 
orbit positions and velocities are used to obtain 



  
(pseudo-) observations of the disturbing potential 
along the orbit (Jekeli, 1999). These data are 
processed with the space-wise approach. This is a 
multi-step collocation procedure that consists of the 
Wiener filter, gridding by least squares collocation, 
harmonic analysis of the grids, and iterations made in 
order to account for the non-optimality of the Wiener 
filter. For details of these steps and related results 
with these data, see (Migliaccio et al, 2007). For the 
present study a filtered grid of potential T and a grid 
of second order radial derivatives Trr are used.  In the 
latitude interval -83 to 83 degrees these grids have an 
error Standard Deviation (STD) of 0.022 m2s-2 and 
0.61 10-12s-2 (milli-Eötvös) respectively. The high 
quality of the T grid is also due to noise-free 
positions used. The accuracy is much smaller over 
the poles because of the GOCE orbit inclination (i = 
96.5°). Note that the gradients are measured in the 
gradiometer reference frame (x,y,z) but through the 
filtering and gridding they are transformed into the 
Local Orbital Reference Frame (ξ,η,r) (LORF), 
where ξ is almost along-track, η cross-track and r 
radial. 

Ground gravity anomalies Δg are simulated with 
the signal from EGM96 up to degree and order 360 
and white noise of 5 mgal. A set of true available 
observations is used for the longitude and latitude. 
The EGM96 reference sphere is used as radius. 

The altimetry simulation is based on the data from 
the Geodetic Mission (phase E) of ERS1 as provided 
by AVISO (1998) in the merged T/P & ERS1 

corrected Sea Surface Heights (CORSSHs) products. 
This set of ERS1 SSHs refers to reprocessed data 
which have improved orbit accuracy. The procedure 
followed was based on fitting the original ERS data 
(NOAA JGM-2 orbits) to the more precise 
TOPEX/Poseidon data (JGM-3 orbits) using a global 
minimization principle of the ERS1-T/P dual 
crossover differences (Le Traon et al., 1995; Le 
Traon and Ogor, 1998). Based on this adjustment, 
improved ERS orbits with an accuracy similar to T/P 
ones (2cm rms) was obtained. Observations of the 
geoid N are generated from EGM96. A generous 
error is added to them: track-wise bias and tilt, plus 
white noise of total 4cm RMS (Root of Mean 
Square). A “bow tie” error (Schrama, 1989) of 3.5cm 
RMS is also simulated, but it is not added unless 
specified so.  

In order to have a more detailed geoid in the 
simulation, the GPM98 model (Wenzel, 1998) is 
added to all the data, from degree 361 to 720 and 
order 0 to 720. For the collocation solution, 
EIGEN_gl04c (Förste et al, 2007) is subtracted, up to 
degree and order 360, from all the data (Fig. 1). The 
differences of this model to EGM96 are interpreted 
as long wave-length errors. This does not imply a 
judgement by the authors about the quality of these 
models. These differences are similar to the nominal 
EGM96 errors (Maggi et al, 2007) and this is useful 
to perform simulations where a model with long 
wavelength errors is used as reference. 

 
 Fig. 1 The simulated geoid of the central Mediterranean, i.e. the synthesis from EGM96 and GPM98 referenced to 

EIGEN_gl04c. 



  

 
Fig. 2 The simulated MDSST.

A Mean Dynamic Sea Surface Topography 
(MDSST) is also simulated. The model determined 
by Rio (2004) (Fig. 2) is taken and interpolated to the 
altimetry points. The MDSST is not present in the 
altimetry observations, unless specified so. 

3  Local geoid determination 

3.1 Collocation with ground gravity and 
altimetry data 

A local geoid determination is often made using the 
well-known method of least squares collocation 
(Moritz, 1980).  
The predicted geoid undulation based on gravity and 
undulation is given by: 
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where y  is the vector of observed Δg and N, ssC  is a 
matrix computed from the Δg and N covariances and 
cross-covariances, NsC  is a matrix computed from 
the cross-covariances of the predicted N with the 
observed Δg and N and vvC  describes the Δg and N 
noise. In spherical approximation, the covariance and 
cross-covariance functions to be used in (1) are 
obtained by: 
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where ( )ψcos=t , ψ  is the spherical distance, ( )tP  
are Legendre polynomials of degree , R  is the 
mean earth radius, QP rr ,  are the radii of points P  
and Q , μ  is the gravitational constant times the 



  
earth mass, 2~σ  are some adapted signal degree 
variances and ( )1−=a .  
The quantity γ  is the mean normal gravity used 
throughout the simulations. 

The prediction error covariance matrix is 
computed by (Moritz, 1980): 

( )( )sNvvss
T
sNNNe CCCCCC 1−+−= ,      (8) 

where, the matrix NNC  is computed from the N 
covariance function. For comparisons with the actual 
errors computed from simulations, the point-wise 
STD is used: 

( )iiei ,C=σ .                    (9) 

3.2  Utilization of GOCE data 

The functions (eq. 4), (eq. 6) and (eq. 7) are those 
suitable for including gridded potential in the geoid 
prediction. For the gridded second radial derivatives, 
the following functions are also needed: the 
covariance function of Trr and its cross covariance 
functions with T, Δg and N. 

( )tP
rr

R
R

C
QP

TT QrrPrr ∑
=

+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

max

min

3
2

22
6

2

,
~σβμ ,   (10) 

( )tP
r
R

r
R

R
C

QP
TT QPrr ∑

=

++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

max

min

13
2

4

2

,  ~ σβμ , (11) 

( )tP
r
R

r
R

R
C

QP
Tg QrrP ∑

=

++

Δ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

max

min

32
2

5

2

,   ~ σδμ ,(12) 

QPrrQPrr TTNT CC ,,
1
γ

= ,                 (13) 

where, ( )( )21 ++=β  and βαδ = . 
The covariance functions needed for Trr are easy to 

compute because the radial direction of LORF 
coincides with the up direction of an East-North-Up 
(ENU) frame. If other derivatives along directions 
not coinciding with ENU were to be used then all the 
covariance functions would have to be computed and 
linear combinations would have to be made, 
according to the rotations between the used 
directions and the ENU (Tscherning, 1993). This 
procedure is made inside the space-wise approach, 
because the other two directions of LORF differ from 

the East and North. However the gridded second 
radial derivatives produced with the space-wise 
approach are easy to handle in collocation. 

If all four data types are used, vector y  (Eq. 1) 
now includes, in addition to Δg and N, the gridded T 
and Trr. The signal and error matrices (Eqs. 4 and 8) 
include the covariances of Trr and T and their cross 
covariances with Δg and N. 

3.3  A simulation of geoid prediction  

The simulated geoid over the central Mediterranean 
is examined. The considered area is bounded 
between 35o<φ<47o and 2o<λ<20o and divided in 24 
cells of 3 by 3 degrees. The geoid is predicted by 
least squares collocation on a regular spherical grid 
of 0.2 degrees. A separate collocation is made for 
every cell. A limit for the number of data is set: 1500 
gravity anomalies Δg per cell / 2000 for 3 cells that 
cover the Alps, 1500 altimetry observations N per 
cell, 1100 gridded Trr and 350 gridded T. Δg and N 
are taken with overlap of 1o around each cell, while 
GOCE gridded data are taken with 2o overlap.  

The degree variances 2~σ  are based on 
considering a-priori knowledge of the degree 
variances of the differences between EGM96 and 
EIGEN_gl04c, up to degree 360, and the signal 
degree variances of GMP98 from degree 361 to 720. 
These degree variances are scaled to fit the gravity 
anomaly variance locally. Consistency between the 
true errors and the predicted errors (Eq. 9) justify this 
simple choice. For optimal results a simultaneous fit 
to Trr and Δg could be made (Knudsen, 1987) and for 
real data closed covariance expressions up to infinite 
degree (Tscherning and Rapp, 1974) can be used. A 
more thorough study about the degree variances 
estimation for the combination of heterogeneous data 
types is a very interesting and important topic on its 
own, though it is this is not addressed here.  
Fortunately the collocation results are robust to some 
variations of the covariance function (Sansò et al., 
1999). 

For the 24 cells of the whole area the addition of 
GOCE data to the already available Δg and N data 
leads to significant improvement (Table 1). Edge 
effects, data gaps and distribution problems are 
resolved with GOCE. 

The effect of heterogeneous data combination is 
better seen if smaller areas are examined. Therefore, 
four “zoom-in” cases, from the twenty four 
examined, are presented herein. All refer to areas 
included in a single 3 by 3 cell, so that no errors of 
cells treated separately are mixed.  



  
Table 1. Geoid prediction errors, in cm, for the whole area 
(case whole.) and different data combinations. 

case data used STD RMS 
whole. Δg 16.5 17.1
whole. Δg, N 9.9 9.9
whole. Δg, N, Trr 5.1 5.0
whole. Δg, N, T, Trr 4.8 4.8

The first zoom is made in the area between  
44o<φ<47o and 6o<λ<8o. This is inside a cell with 
2000 Δg that covers mostly the Alps. It is seen that 
GOCE improves the error STD but improves much 
more the RMS (Table 2) because the Δg only 
solution has a mean value problem. This problem is 
present in almost all the cells, regardless of the 
number and distribution of Δg. The solution for this 
cell is repeated with 1000 points of Δg and 650 
points of Trr. It is seen that is better to add some 
GOCE data than to increase the number of Δg 
observations. 

The second “zoom” is made in an area between 
42o<φ<44o and 11o<λ<13o. There, the mean value 
problem solution with the use of T is seen (Table 3). 

Table 2.  Geoid prediction errors, in cm, for an area in the 
Alps for 2000 Δg, 1100 Trr and 350 T (case alps 1.) and for 
1000 Δg and 650 Trr (alps 2) for different data combinations.  

case data used STD RMS 
alps 1. Δg 9.7 15.2
alps 1. Δg, Trr 4.8 5.1
alps 1. Δg, T, Trr 4.7 4.7
alps 2. Δg, 6.1 6.1

Table 3.  Geoid prediction errors, in cm, for an area in central 
Italy for 1500 Δg and 350 T (case centre 1).  

case data used STD RMS 
centre 1. Δg 5.4 12.9
centre 1. Δg, T 3.1 3.1

The third “zoom” is made at a cell bounded 
between 41o<φ<43o and 5o<λ<8o degrees. The dense 
altimetry data give a very good solution (Table 4). If 
the MDSST is added this quality is degraded. This 
effect is present at every area where the MDSST is 
high. If GOCE data are added most of these problems 
are fixed. From the fourth “zoom”, referring to the 
area between 35o<φ<38o and 17o<λ<20o degrees, a 
similar result is obtained. When the bow tie error is 
added to altimetry data, long wave-length errors 
arise, but they are corrected significantly when 

GOCE data are added (Table 5). An important 
conclusion can be drawn based on the 
aforementioned results, i.e., that the altimetric 
information dominates, but unmodelled MDSST and 
possible “bow tie” errors can be identified and 
consequently corrected with the information of 
GOCE. 

A final test for a large area between 35o<φ<47o 
and 0o<λ<20o is performed. 6000 Δg are used, 
distributed on a grid and with a 3 mgal white noise, 
thus simulating an interpolated grid. The estimate 
was predicted at 2145 stations in the area 37o<φ<45o 
and 2o<λ<18o. Then, the impact of using 6000 of the 
gridded T or Trr values, distributed on the same grid 
used for Δg, is tested. The decisive contribution of 
these data when combined with gravity anomalies is 
verified, even for a large area with good distribution 
of Δg and with lower noise (table 6). 

Table 4.  Geoid prediction errors, in cm, for an area of sea, 
(case sea 1.) and the same area but with altimetry observations 
containing the MDSST (case sea 2). 

case data used STD RMS 
sea 1. N 1.5 1.5
sea 2. N 3.4 12.4
sea 2. N, T, Trr 3.7 3.8
sea 2. N, Δg, T, Trr 3.0 3.0

Table 5.  Geoid prediction errors, in cm, for an area of sea, 
(case sea 1.) and the same area but with altimetry observations 
with “bow tie” error (case sea 2). 

case data used STD RMS 
sea 1. N 1.6 1.7
sea 2. N 2.7 8.8
sea 2. N, T, Trr 3.3 3.5
sea 2. N, Δg, T, Trr 2.8 3.0

Table 6. Geoid prediction errors, in cm, for a large test area 
with 6000 Δg, Trr and T (case large). 

case Data used STD RMS 
large. Δg 7.0 8.0
large. Trr 13.5 13.5
large. T 15.1 15.1
large. Δg, Trr 3.8 3.8
large. Δg, T 3.6 3.6

 



  
4  Conclusions  

Both, the GOCE data and the gravity field model 
derived from GOCE data, are expected to present 
good long wavelength information. This will be very 
useful for local gravity field modelling. The results 
presented in this paper show that the use of processed 
GOCE data significantly increases the accuracy of 
local geoid estimation with gravity data on ground or 
at sea and the use of GOCE potential estimates 
resolves mean value problems.  

In marine regions the altimetric information 
dominates and spans the entire geoid spectrum. 
However if MDSST effects and/or errors like the 
“bow tie” exist, other long wave-length information, 
just like that of GOCE, is needed. The latter points 
out the utility of GOCE for MDSST estimation, as 
well as the possible use of GOCE data for calibration 
of other data types. 
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