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ABSTRACT. The determination of local and regional geoid models has been the topic of extensive research in 
physical geodesy for the last decades. From the initial realizations of astrogeodetic geoid models and 
combination solutions with few gravity observations, we have sailed through the era of satellite geodesy and the 
exploitation of altimetric observations which provided an unprecedented view of the geoid and Earth’s gravity 
field over the oceans. From 2000 on, when the gravity field dedicated satellite missions of CHAMP and GRACE 
have been launched, gravity field and geoid determination have experienced tremendous improvements in the 
long and medium wavelength of the spectrum, while geoid variations of a few mm attributed to mass variations 
have been monitored for the first time by space geodetic techniques. The significant improvement in Global 
Geopotential Model (GGM) determination, with the latest example of EGM08 (Pavlis et al., 2008), and the 
expected impact of the GOCE mission, which is planned to be launched in 2008, will result in a cumulative 
geoid error of ±2 cm to degree and order 200.  

The drastic improvement in geoid determination through heterogeneous data combination, i.e., gravity 
anomalies, altimetric sea surface heights, deflections of the vertical, GPS/Leveling geoid heights, potential and 
its second order derivatives, has also led to the synergy between geodesy and other geosciences. Of special 
interest is the application of geodetic techniques and products in oceanographic studies and vice versa. In this 
frame, mean sea surface, sea surface topography and ocean circulation models have been derived from geodetic 
data and techniques. The key component in all these studies has been the combination of various types of 
geodetic data, which has been a topic of geodetic research for more than fifty years, originating from the 
pioneering work of Eeg and Krarup (1975), who first presented the integrated approach of geodetic data 
adjustment. From that idea stem the origins of the leading estimation principle in modern geodetic research, i.e., 
that of least squares collocation (LSC), which due to the use of many and various types of data and through the 
use of Fourier transforms (FT) introduced the use of system theory with geodetic data. 

In this context, the present work aims to provide a review of the application of least squares collocation for 
heterogeneous data combination in studies related to the determination of the geoid and the sea surface 
topography. First, an outline of the observation equations used in LSC is presented with a derivation of the final 
geoid height estimates. The application of LSC for mean dynamic topography determination is then presented, 
together with the implementation of the Multiple Input Multiple Output System Theory for geoid determination. 
In the same section, a brief outline of the similarities and differences between the two methods is also given. The 
next section is devoted to the application of LSC in data combination schemes when GOCE observables, i.e., 
potential and its second order derivatives, are available. It should be noted that within the context of this paper, 
whenever GOCE observables are mentioned they refer to simulation datasets. Results acquired by the authors 
towards the determination of geoid models over both land and sea are also presented, while a detailed discussion 
on the improvement that GOCE data provide is given. The last section is devoted to the presentation of a new 
method for altimetric sea surface height data analysis and the determination of sea surface topography 
covariance functions based on second order kriging. Results based on both simulated data and real altimetric sea 
surface heights are presented using both the traditional LSC approach and second order kriging.  

Keywords. Mediterranean geoid, GOCE mission, gravity, altimetry, quasi-stationary sea surface topography. 

1 Introduction 

This paper summarizes the state of the art of the research conducted by the University of Thessaloniki and 
Politecnico di Milano in the framework of a Scientific and Technological cooperation agreement supported by 
the Joint Greek-Italian Committee. The purpose of the project was the study of integrated techniques to 
determine the geoid and the quasi-stationary sea surface topography for closed sea areas, with a particular focus 
on the Mediterranean Sea, from satellite and marine data. Satellite data can include satellite altimetry 
observations of various missions (e.g., ERS1/2, TOPEX/Poseidon, JASON-1, ENVISAT, etc.) and data from the 
recent and forthcoming satellite missions (e.g., CHAMP, GRACE and GOCE), while ground observations are 
land, marine and airborne gravity, GPS/Levelling and bathymetry data (Forsberg et al. 2007). Re-tracked multi-
satellite altimetry sea surface heights close to the coastline (see, e.g., Hwang et al. 2006, Kingdon et al. 2008, 
Madsen et al. 2007), that in the last years have enriched the available data for gravity, geoid, sea surface 
topography and ocean circulation modelling, have been included. Since the focus of the paper is not on the 
combination of global models with local observations, we shall simply assume in the introductory section to 
Least Squares Collocation that the contribution coming from a global model (e.g., up to degree 180 or 200) is 
subtracted from everything just to avoid mixing signals with very different orders of magnitude that usually 
poses numerical problems in data management. Also, after this removal, the ordinary geodetic equations can be 
used in a spherical approximation form.  

So we consider here as observed quantities the following three types of data: 

{ };
t i i i

h D t D≤ ≤ + ∆ , (1.1)  
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which denote the altimetric observations (i.e., the height of the sea surface over the reference ellipsoid) collected 

along a track i during a period ∆i, over the area of study AS at date Di; ( ){ }ig P∆ , which denote a set of free-air 

gravity anomalies in the area AS; and observations of the anomalous potential { }ijT and of its second order 

derivatives ( ){ }rr ij
T  given on a sphere at mean satellite altitude at a point Pj along a track i, like those that can be 

derived from the GOCE mission employing the so called space-wise data analysis (Migliaccio et al 2004, 2006, 
2007, submitted). The main tool that will be applied to perform a consistent combination of all data and predict 
the geoid and the quasi-stationary SST is an empirical analysis technique derived from the Wiener-Kolmogorov 
prediction theory, and referred to in geodetic literature as least squares collocation (LSC).  

The first two data sets are the classical ones in geodetic literature and practice and have been used for long in 
the determination of gravity field functionals and quantities related to the marine geoid. Their combination 
schemes using collocation will be reviewed in §3. The use of the third type of data sets, namely of the disturbing 
potential and its second order derivatives at satellite level, and the study of their impact on the accuracy of the 
derived solutions, have been analytically studied in the frame of the Greek-Italian bilateral project and will be 
summarized in §4. Finally, considering that the aforementioned collocation technique, with its stepwise approach 
to the empirical estimation of covariances, can produce biases in the predicted quantities (Reguzzoni et al. 2005), 
a new proposal is developed that should enable us to make a better estimate of the second order solutions, i.e., 
the covariances, of the relevant fields. This proposal is developed and presented in §5, where the conclusions 
follow. In the next paragraph we shortly summarize the fundamentals of the observation equations of our data 
and of the collocation technique.  

2 Observation equations and collocation 

Let us start by recalling the form of the observation equations of our data with the understanding that in this 
section whenever we write the anomalous potential T we mean the anomalous potential already reduced by some 
preliminary global model, up to a medium degree, e.g., n=180 or n=200. First of all we have the following 
observation equation: 

( )t i i i t t t
h a b t D N vζ= + − + + + , (2.1)  

where: ai, bi are the bias and tilt of the track i; Nt denotes the geoid height at the sub-satellite point Pt along track 
i; ζt denotes the quasi-stationary SST at the same point Pt; vt is the (uncorrelated) noise of the observations. 

Note that usually the model presented in Eq. 2.1 is augmented with the inclusion of an orbit error and some 
time dependant oceanic signal, e.g., tides. The orbit error stems from the fact that ht is derived from the 
ellipsoidal height of the satellite minus the true observation, which is just the height of the satellite over the sea 
measured by radars. Of course the height of the satellite derived from tracking data contains an estimation error 
which however is nowadays reduced to very few centimeters (Le Traon et al. 1995, Le Traon and Ogor 1998, 
Schrama 1989). In any case, both signals are so smooth for a short track, like those present in the Mediterranean 
Sea, that they are known to be well represented by the linear trend term in Eq. 2.1. The rest of the time varying 
effects of the SST are absorbed by the error term of Eq. 2.1. It should be noted that the time-varying part of the 
SST can be regarded as a stationary random signal, therefore its contribution can be modeled and removed by the 
error/noise term of Eq. 2.1. As shown in Cazenave (2002), Fenoglio (2002), Larnicol et al. (1995) and Tziavos et 

al. (2005) the time varying sea surface topography in the Mediterranean Sea presents clear seasonal 
characteristics and one may object that it cannot be regarded as a random signal. Here we should distinguish two 
cases. The first one refers to the scheme described by Eq. 2.1 where we are dealing with a single altimetric track 
i. In this case, that the data span over a limited time period t, the time-varying (TSST) can be regarded as a 
random signal and be absorbed by the noise term. The second case is when a large amount of data is available 
spanning a large period of time, e.g., when a complete annual-cycle of exact repeat mission altimetry data are 
available. In this case, the signal of the TSST cannot be regarded as purely random, due to its (partly) seasonal 
characteristics. Nevertheless the bias term a introduced in Eq. 2.1 includes any TSST signal with non-random 
characteristics, and any remaining random part is absorbed by the noise term. A more complete representation of 
Eq. 2.1 is given in §3 where a dedicated variable δζ is introduced to describe the TSST. Moreover, let us remark 
that the SST field described by ζt is quite small in the Mediterranean Sea reaching the 20 cm level as a maximum 
while the TSST is of the order of a few centimetres.  

As for the other terms in Eq. 2.1 let us recall that the geoid height N is related to the disturbing potential T by 
Bruns’ formula (Heiskanen and Moritz 1967) 



4 

( ) ( )
( )

T P
N P

Pγ
= , (2.2)  

Note that in Eq. 2.2 when GPS/Levelling data are to be used, then the zero degree geoid term No should be 
added. The zero-degree term accounts in principle for the effects of mass and potential differences between the 
true geoid and the reference equipotential ellipsoid and appears as an offset between the EGM/gravimetric geoid 
heights and the geometric heights (Heiskanen and Moritz 1967). Free-air gravity anomalies ∆g are given from 
the well-known fundamental equation of physical geodesy (ibid.) 

( ) ( )
( )

( ) ( )1

P P

T P P
g P T P

h P h

∂ ∂
∆ = − −

∂ ∂

γ

γ
, (2.3)  

Given that the normal to the earth ellipsoid is reasonably approximated by the direction of the radius vector r, 
Eq. 2.3 becomes 

( ) ( )
( )

( ) ( )1 γ

γ

∂ ∂
∆ = − −

∂ ∂
P P

T P P
g P T P

r P r
. (2.4)  

Notice that in Eqs. 2.3 and 2.4 the gravity anomalies are accompanied by a noise 
g

v∆  of the order of 5 mGals. Of 

course the gravity information represented by Eq. 2.4 can include airborne data as well as gravity disturbances 
either on land or at sea from altimetry inversion. Finally, T and Trr (the second radial derivative) do not need to 
be written in terms of observation equations, since they are self-explanatory. We only observe that they are given 
at an altitude of, say, 200 km and that they are typically affected by errors in the range of ( ) ~ 1cmTσ γ  and 

( ) 3~ 0.5 10 E.U.
rr

Tσ −⋅  The common structure of these data is of utmost importance; we will not discuss it 

within this paper, we shall only assume that it has been derived in the GOCE data analysis framework 
(Migliaccio et al. 2007, Pail 2003, Rummel et al. 2004, Sünkel 2002). Now that the observation equations have 
been written, let us make the following hypothesis on the covariance structure of the different signals (N, ζ, Τ, 
Τrr) and noises involved (Knudsen 1987, Moritz 1980, Tscherning 1986, Tscherning 1993, Tscherning and Rapp 
1974, Sansò 1986): 
 

(i) T has an isotropic covariance function, with structure  

 ( ) ( ) ( ) ( ) ( )
max

max

1 12 22 2

0 1

, cos cos

+ +
∞

= = +

      
= +               

∑ ∑ψ σ ψ

n n
n

B

TT n n PQ n n PQ

n n nQ P Q P

R RGM GM
C P Q c T P T P

R r r R r r
,(2.5)  

 where, G is Newton’s gravitational constant and M is the mass of the Earth, ( )n
c T  are degree 

variances up to the full power of the reference model, RB is the so-called radius of the Bjerhammar 
sphere, Pn are the non-normalized Legendre polynomials, ( )n

Tσ  are the degree variances adopted 

above the maximum degree of expansion until infinity according to the model of Tscherning and 
Rapp (1974) (see also §4); 

(ii) given Eqs. 2.4 and 2.5 and by covariance propagation we have the auto-covariance functions for 
geoid heights, gravity anomalies and the second order derivatives of the disturbing potential  

 ( ) ( )1
, ,NN TT

P Q

C P Q C P Q
γ γ

= , (2.6)  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

max

max

22 2
2

0

22 2
2

1

, 1 cos

1 cos

+

∆ ∆
=

+
∞

= +

  
= − +       

  
+ −        

∑

∑

ψ

σ ψ

n
n

g g n n PQ

n Q P

n

B

n n PQ

n n Q P

RGM
C P Q n c T P

R r r

RGM
n T P

R r r

, (2.7)  
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

max

max

32 2
2 2

3
0

32 2
2 2

3
1

, 1 2 cos

1 2 cos

+

=

+
∞

= +

  
= + + +       

  
+ + +        

∑

∑

ψ

σ ψ

rr rr

n
n

T T n n PQ

n Q P

n

B

n n PQ

n n Q P

RGM
C P Q n n c T P

r rR

RGM
n n T P

r rR

. (2.8)  

 In the same way we can define all the appropriate cross-covariance functions such as 
, , , , ,

rr rrgT gN TN T T gTC C C C C∆ ∆ ∆  and 
rrT NC  

 

( ) ( ) ( ) ( )

( ) ( ) ( )

max

max

122

3
0

12
2

3
1

, 1 cos

1 cos

++

∆
=

++
∞

= +

  
= − +       

  
+ −        

∑

∑

ψ

σ ψ

nn
n

gT n n PQ

n P Q

nn

B B

n n PQ

n n P Q

GM R R
C P Q n c T P

r rR

R RGM
n T P

r rR

, (2.9)  

 ( ) ( )1
, ,gN gT

Q

C P Q C P Q
γ∆ ∆= , (2.10)  

 ( ) ( )1
, ,TN TT

Q

C P Q C P Q
γ

= , (2.11)  

 

( ) ( )( ) ( ) ( )

( )( ) ( ) ( )

max
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0
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=
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=
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  
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∑

∑

ψ

σ ψ

rr
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n

T T n n PQ

n P Q

nn
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B B

n n PQ

n P Q

GM R R
C P Q n n c T P
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, (2.12)  

 

( ) ( ) ( )( ) ( ) ( )

( )( )( ) ( ) ( )

max
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0
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, 1 1 2 cos

1 1 2 cos
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=

++
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  
= − + + +       

  
+ − + +        

∑

∑

ψ

σ ψ

rr

nn
n

gT n n PQ

n P Q

nn
n

B B

n n PQ

n P Q

GM R R
C P Q n n n c T P

r rR

R RGM
n n n T P

r rR

, (2.13)  

 ( ) ( )1
, ,

rr rrT N T T

Q

C P Q C P Q
γ

= . (2.14)  

 Note that in Eqs. 2.6-2.14 when, e.g., ( ),
rrT NC P Q  is derived, it is assumed that 

rr
T  refers to point P 

and N to point Q.  
(iii) vt is a noise with given variance; 
(iv) v∆g is a noise with given variance;  
(v) vT and 

rrTv  are prediction errors of T and Trr, with given covariance and cross-covariance structure;  

(vi) the noises in (iii), (iv) and (v) are independent from one another and independent from T; 
(vii) ζt has some (unknown) isotropic covariance in AS; 
(viii)  ζt is independent of T and of all noises. 

Given all the aforementioned equations, we can compact our observation equation (see Eq. 2.1) in the 
following form (Moritz, 1980): 

y = Ax + s + v , (2.15)  
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where the bold-faced symbols denote vectors or matrices. In Eq. 2.15, y is the full observation vector, that 
contains the along track sea surface height observations h, the available marine gravity anomalies ∆g at sparse 
points on the surface, and the disturbing potential and its second order derivatives data on grids at satellite level 
coming from GOCE-like missions, i.e., osT  and os

rr
T . Therefore, the data vector can be written as: 

T T T
T T =  

os os

rr
y h ∆g T T , (2.16)  

Moreover, in Eq. 2.15, x is the vector of the unknown deterministic parameters describing the bias and tilt of the 
N altimetric tracks considered: 

...

1, 2,...,

...

i

i

a
i N

b

 
 
 = =
 
 
  

x , (2.17)  

and A is the design matrix of our observation equations describing the influence of the parameters x on the signal 
in y. Equivalently, s is the set of signals,  

1 1

2 2
r

r r r

γ γ
   

+ +   
   

∂   
− − − −= =   ∂   
   
   

  

SS

SS

rrrr

T ζ T ζ

Τ
T T Ts

TT

TT

, (2.18)  

where all of its components, i.e., 
1 2

, , ,
r

rγ
+ − − S S

rr
T ζ T T T T , must be consistently related through one and the 

same covariance function. Finally, v is the vector of noises and estimation errors, with the covariance properties 
illustrated by (iii), (iv), (v) and (vi) above:  

ν

ν
ν

ν
ν

∆

rr

t

g

T

T

    
    
    ====     
    
        

. (2.19)  

If we assume to know ( ),
TT

P QC , ( ),P QζζC  and ( ),
T

P QζC , that is the covariance and cross-covariance 

functions of the disturbing potential and of the sea surface topography, then with the further assumption (viii) 
listed above, we can construct the full variance-covariance matrix of both s  and v , i.e.,  

 
yy ss vv
= +C C C , (2.20)  

As well as all the cross-covariance functions like  

( ) ( ), ,
Ty Ts

P Q P Q=C C , (2.21)  

( ) ( ), ,
y s

P Q P Qζ ζ=C C , (2.22)  

Now we can perform the optimal linear estimate of x , and the prediction of ( )T P and ( )Pζ  for any given point 

P, analytically according to the formulas (Knudsen 1987, 1993) 

( )-1 -1ˆ T T

yy yy=x A C A A C y , (2.23)  
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( ) ( ) ( )-1ˆ ˆ,
Ts yy

T P P= ⋅ −C C y Ax , (2.24)  

( ) ( ) ( )-1ˆ ˆ,
s yy

P Pζζ = ⋅ −C C y Ax . (2.25)  

Also, prediction errors of both ( )T̂ P  and ( )ˆ Pζ can be computed, at least in principle, from 

( ) ( ) { }2 -1 -1 1 -1, T

TT Ts yy yy yy sTP P Pσ −
Τ = − −C C C C AN A C C , (2.26)  

( ) ( ) { }2 -1 -1 1 -1, T

s yy yy yy sP P Pζ ζζ ζ ζσ −= − −C C C C AN A C C . (2.27)  

In order to implement an estimation scheme like the one described previously, we have to face two 
difficulties: a) to understand where one can get the covariances of T and in particular the local covariances, as 
well as that of ζ and b) the unequivocal complexity arising from the need of solving systems of the same 
dimensions as y. In the next two paragraphs we shall see how this has been done in past and recent studies.  

3 Heterogeneous data combination for gravity field and sea surface topography modelling  

3.1 Spectral domain heterogeneous data combination for gravity field modelling  

Having outlined the LSC based heterogeneous data combination in the previous section, its frequency domain 
representation will be presented here, while a specific example of gravimetric, altimetric and GOCE potential 
and second order differences data combination for geoid determination will be given. Moreover, the similarities 
and differences between system theory and LSC are outlined, in order to show the physical relation between all 
methods presented in this work. The second part of this section is devoted to an outline of mean dynamic 
topography determination using LSC. 

Since the beginning of the 80’s, spectral methods and FT in particular, have been extensively used for the 
solution of the classical boundary value problems of physical geodesy. The key concept for the utilization of FT 
in geodetic problems lays to the representation of well-known integral formulas (e.g., Stokes’ and Vening-
Meinesz integrals for the prediction of geoid heights from gravity anomalies and deflections of the vertical, 
respectively) as convolution integrals. Since, in the spectral domain the convolution of input signals is replaced 
by simple multiplication of their spectra, FT and Fast Fourier Transforms (FFT) have been used mainly due to 
their high-efficiency in terms of time, compared to the usual integral methods of solving geodetic boundary 
value problems (Tziavos et al. 1998a,b; Vergos et al. 2005a,b). Despite the gain in processing time, FFT 
methods carry some disadvantages, among which the main ones are: a) The need for regularly spaced (i.e., 
gridded) data, b) the inability of predicting the estimation error for the output signal (Andritsanos et al. 2001, 
Sideris 1996, Sansò & Sideris 1997) and c) the prerequisite of having a single input and a single output signal. 
On the other hand, the leading estimation method in physical geodesy, i.e., LSC, which was previously discussed 
in the frame of heterogeneous data combination schemes, allows the use of multiple input signals and irregularly 
distributed data, while it provides an optimal, under the Wiener-Kolmogorov principle, estimate of the output 
signal with simultaneous estimation of the full variance-covariance matrix of the output signal error (Moritz 
1980). As it was shown in the previous section, in contrast to FT and FFT methods, LSC can incorporate 
multiple sources of heterogeneous input data if their covariance and auto-covariance functions have been 
computed. A nice discussion on the a-priori estimation of error covariance functions is given in Arabelos et al. 
(2007). 

Nevertheless, especially in modern day geodetic applications with the hundreds of thousands of altimetric, 
gravimetric and space borne gravity field related observations, the application of LSC has become difficult. 
Therefore, a frequency domain equivalent to LSC has been developed employing system theory. The latter has 
been traditionally used in signal processing and signal transmission methods as well as to various applications of 
electrical engineering. Sideris (1996) was the first one who proposed a solution of geodetic boundary value 
problems in the frequency domain employing system theory and presenting the general scheme for the use of a 
system with multiple inputs and multiple outputs (Multiple Input Multiple Output System Theory – MIMOST). 
Numerical solutions and examples of using MIMOST methods for the estimation of geoid heights, gravity 
anomalies, deflections of the vertical, the quasi-stationary sea surface topography from heterogeneous noisy data 
as well as in combined gravimetric and GPS geoid solutions have been presented in several papers (see, e.g., 
Andritsanos 2000; Andritsanos et al. 2001, 2004; Andritsanos and Tziavos 2002; Vergos et al. 2005). 

Let us assume that gravity, altimetry and GOCE observations, i.e., potential and its second order radial 
derivatives, are available with the aim of predicting geoid heights, then a MIMOST system with four input 
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signals and a single output will look like the flowchart presented in Figure 1. In the system presented in Fig. 1 
we have four input signals, Ngr, Nalt, TGOCE, and GOCE

rr
T  which are contaminated by noise mgr, malt, GOCE

T
m  and 

rr

GOCE

T
m  in order to simulate their errors. Moreover what we really know are just the variances and not the 

complete errors of the signal. Nevertheless, it should be noted that as shown by Andritsanos et al. (2001) in the 
case of exact repeat altimetric missions an estimation of the input error Power Spectral Density (PSD) function 
can be directly evaluated using this successive information. 

 
Figure 1: A quad-input single output system for the prediction of geoid heights from gravity, altimetry and GOCE data. 

 
The final solutions and the error PSD function of the MIMOST method are calculated according to the fol-

lowing equations (ibid., Sideris 1996): 

ˆ ˆ ˆ ˆ
ˆ

gr gr gr alt gr GOCE gr GOCE
o o o o o o o rr o

alt gr alt alt alt GOCE alt GOCE
o o o o o o o rr o

gr alt GOCE GOCE
rr

GOCE gr GOCE alt GOCE GOCE GOCE GOCE
o o o o o o o rr o

GOCE gr GO
rr o o rr o

N N N N N T N T

N N N N N T N T

o NN NN NT NT

T N T N T T T T

T N T

 =  

P P P P

P P P P

N H H H H
P P P P

P P

0 0 0

0 0 0

0 0 0

0 0 0

CE alt GOCE GOCE GOCE GOCE
o rr o o rr o rr o

gr gr gr alt gr GOCE gr GOCE
o o o o o o o rr ogr gr

alt gralt alt
o o o

GOCE GOCE
T T

GOCE GOCE
T Trr rr

N T T T T

N N N N N T N T
m m

N N Nm m

m m

m m

  
  
  
   −
  
  
  
 

 
 
 

−  
 
 

  

P P

P P P P
P

P PP

P

P

1

alt alt alt GOCE alt GOCE
o o o o rr o

GOCE gr GOCE alt GOCE GOCE GOCE GOCE
o o o o o o o rr o

GOCE gr GOCE alt GOCE GOCE GOCE GOCE
rr o o rr o o rr o o rr o rr o

gr

o

alt
N N T N T

o

GOCE

oT N T N T T T T
GO

rr o
T N T N T T T T

−
  
  
  
  
  
  
     

N
P P N

TP P P P

TP P P P
CE

 
 
 
 
 
  

, (3.1)  
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ˆ ˆ ˆ ˆ ˆ ˆ
 =  

gr gr gr alt gr GOCE GOCEgr
o o o o o o o rr o

alt gr alt alt alt GOCE GOCEalt
o o o o o o o rr o

gr alt GOCE GOCE
rr

GOCE gr GOCE alt GOCE GOCE GOCEGOCE
o o o o o o o rr o

GOCE gr
rr o rro o

N N N N N T N T

N N N N N T N T

ee NN NN NT NT

T N T N T T T T

T N T

P P P P

P P P P

P H H H H
P P P P

P P

ˆ ˆ ˆ ˆ

0 0 0

0 0 0

0 0 0

0 0 0

ˆ ˆ ˆ ˆ

   
   
   
    −            

 
 
 

− − 
 
    

 −  

GOCE GOCE GOCE GOCEalt GOCE
o rr o rr rro o o

gr gr

alt alt

GOCE GOCE
T T

GOCE GOCE
T Trr rr

gr alt GOCE GOCE
rr

N T T T T

m m

m m

m m

m m

NN NN NT NT

P P

P

P

P

P

H H H H

gr gr gr alt gr GOCE GOCEgr
o o o o o o o rr o

alt gr alt alt alt GOCE GOCEalt
o o o o o o o rr o

GOCE gr GOCE alt GOCE GOCE GOCEGOCE
o o o o o o o rr o

GOCE GOCE GOCE GOCE GOCEgr alt GOCE
rr o rr o rr o rr rro o o o o

N N N N N T N T

N N N N N T N T

T N T N T T T T

T N T N T T T T

P P P P

P P P P

P P P P

P P P P

†
†† ˆˆ

†† ˆˆ

ˆ ˆ ˆ ˆ† †ˆ ˆ

†
ˆ †

ˆ

ˆ

ˆ
ˆ ˆ ˆ ˆ

ˆ

ˆ

0 0 0

0

 
 
 
      

           − +                

gr
gr

altalt

gr alt GOCE GOCE
rrGOCE GOCE

GOCE
GOCErr
rr

gr gr

NN
NN

NNNN

NN NN NT NT
NT NT

NT
NT

m m

m

HH

HH
H H H H

H H

H H

P

P

†
ˆ

†
ˆ

†
ˆ

†
ˆ

ˆ

0 0 ˆ

0 0 0 ˆ

0 0 0 ˆ

  
  
  
  
  
  

   

gr

alt alt alt

GOCE GOCE
GOCE

T T

GOCE GOCE GOCE
T Trr rr rr

NN

m NN

m m NT

m m NT

H

H

P
H

P
H

. (3.2)  

In Eqs. 3.1 and 3.2 ˆ
o

N  is the combined geoid estimation, Ngr, Nalt, TGOCE and GOCE

rr
T  are the pure gravimetric, 

altimetric, GOCE potential and second order derivatives signals, respectively, No
gr, No

alt, GOCE

o
T  and GOCE

o rr
T are 

the gravimetric, altimetric, GOCE potential and second order derivatives observations, m
gr, m

alt, GOCE

T
m  and 

rr

GOCE

T
m  are the input noises of the gravity anomaly, altimetric sea surface heights, potential and second order 

derivatives input signals respectively, Hxy is the theoretical operator that connects the pure input and output 

signals, ˆ
o ox yH  is the optimum frequency impulse response function, ˆ ˆeeP  is the error PSD function, e is the noise 

of the output signal and the † denotes the adjoint, i.e., the transpose, complex conjugate of the matrix under 

consideration. 
If we substitute the vector of observation and estimation signals with  

[ ];

gr

o

alt

o

o o oGOCE

o

GOCE

rr o

N

 
 
 = = 
 
  

N

N
Y X

T

T

, (3.3)  

then Eqs. 3.1 and 3.2 can be written in matrix notation as 

( )1 1ˆ ˆ
o o o o o o o oo X Y o XY Y Y o XY Y Y mm Y Y o

− −= = = −X H Y P P Y H P P P Y , (3.4)  

( ) ( )* * *
ˆˆ

ˆ ˆ ˆ
o o o o o o o o o o

T T T

ee XY Y Y mm X Y Y Y XY X Y X Y mm XY
 = − − − +P H P P H P H H H P H , (3.5)  

where the theoretical operator impulse response function is  

1
XY XY YY

−=H P P . (3.6)  
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In order to see the equivalence of MIMOST with space domain least squares collocation, let us assume that we 
have a stationary, isotropic random input signal described by the vector 

gr

o

alt

o

GOCE

o

GOCE

rr o

 
 
 =  
 
  

N

N
y

T

T

, (3.7)  

and that there exists a linear estimator h(x,y) (represented by h for simplicity) which relates the input signal y 

with the output signal x, i.e.,  

x=hy. (3.8)  

If we denote the error vector by e then its covariance matrix will be given as: 

{ } { } { } { } { }ˆˆee
E E E E EΤ Τ Τ Τ Τ Τ Τ= = − − +C ee h ΥΥ h ΧΥ h h ΥΧ ΧΧ , (3.9)  

where E{·} denotes expectation. From Eq. 3.9, taking into account that all our signals are centered (E{⋅}=0) and 
that C(·)(·)= E{(⋅)(⋅)T

}, after some simple algebra we arrive at the following expression for the error covariance 
matrix of the output signal 

( ) ( )1 1 1
ˆˆ

T

ee XX XY YY YX XY YY YY XY YY

− − −= − + − −C C C C C h C C C h C C . (3.10)  

Eq. 3.10 shows that the error covariance matrix of the predicted signal is composed by two parts, one that 

depends on the linear operator h (let us denote it as ( ) ( )1 1
2

T

XY YY YY XY YY

− −= − −A h C C C h C C ) and another one that is 

independent of h (let us denote it as 1
1 XX XY YY YX

−= −A C C C C ). The latter means that matrix A1 does not change for 

every possible linear prediction and every possible linear operator h. According to Moritz (1980) in order to 
achieve the best unbiased minimum variance linear estimation of signal X from Y, the matrix A2 should be put to 
zero, which holds if our linear operator is given as 

1
XY YY

−=h C C . (3.11)  

Comparing Eqs. 3.6 and 3.11 we can easily verify that they are in fact the same with ( ) XYx, y →h H
F , i.e., 

that h and HXY form a FT pair. Given that, and comparing Eqs. 3.5 and 3.10 we can easily conclude on the 
similarity between MIMOST and LSC. An extensive presentation of LSC and MIMOST, as well as a detailed 
comparison between the two methods and a discussion on their similarities and differences is given in Sansò and 
Sideris (1997). 

3.2 Heterogeneous data combination for sea surface topography modelling  

One of the main problems in utilizing altimetric observations, i.e., heights of the sea surface above a reference 
ellipsoid acquired by radars on-board satellites, for marine geoid modeling, is that they refer to the instantaneous 
sea surface or after a reduction to the mean sea surface and not the geoid itself. In order to use altimetric sea 
surface heights (SSHs) in geoid determination it is mandatory to reduce them to the geoid, i.e., to remove the 
contribution of the sea surface topography and more particularly of its quasi-stationary part (also called mean 
dynamic topography – MDT). The main difficulty, as it will be outlined in the next section, comes from the fact 
that the available MDT models contain large errors close to the coastline, while in closed sea areas they are more 
or less inadequate due to the scarcity of available observations. It is worth mentioning that extensive efforts have 
been put during the last years for the use of altimetric data close to the coastline, especially through dedicated 
retracking of the original SSHs (see, e.g., Hwang et al. 2006, Kingdon et al. 2008, Madsen et al. 2007 and the 
references cited there). These offer a great potential for the determination of more accurate (at least close to the 
achievable accuracy in open oceans) MDT models. LSC offers a good opportunity to estimate both the quasi-
stationary and the time-varying part of the sea surface topography in a combined adjustment scheme providing in 
this way rigorous MDT models for use in other studies. This, together with the derivation of covariance and 
cross-covariance functions for the geostrophic current velocities, will be discussed herein.  



11 

Let us assume that an altimetric observation can be described, in accordance to Eq. 2.1, with the following 
formula: 

ch N vζ δζ= + + + , (3.12)  

where:  
N denotes the geoid height; 
ζ

c denotes the quasi-stationary SST; 
δζ denotes the time-varying SST; 
v is the (uncorrelated) noise of the observations. 

If we further assume that a reference model to degree nmax is used, then the geoid covariance function is given 
by the formula 2.5, where we take: 

( )2 2

0=

= +∑
n

n nm nm

m

c C S , 
( )( )( )1 2 24

=
− − +n

a

n n n
σ  (3.13)  

moreover 2
NN TT

γ=C C . In complete analogy to the geoid height covariance function, a similar kernel function 

associated with the MDT can be used to describe the statistical characteristics of the sea surface topography, i.e., 
(Knudsen and Tscherning, 2006): 

( )
( )

( )
2 1

0

cos

+
∞

=

 
=  

 
∑c c

n

B

n n

n

R
P

R

ζ
ζ ζ

σ ψC . (3.14)  

Note that in LSC the analytical covariance function models should agree to the empirical values available for the 
area under study in order to represent the local statistical characteristics of the signal under consideration, i.e., 
the MDT in this case (Knudsen, 1991). For the description of the behaviour of the degree variances given in Eq. 
3.14, Knudsen (1987, 1991, 1992, 1993) and Knudsen and Tscherning (2006) use a 3rd degree Butterworth filter 
so that the degree variances of the MDT are given as:  

( )
3 3
2 1

3 3 3 3
2 1

 
= − 

+ + 

c

n

k k
b

k n k n

ζσ . (3.15)  

with 2 10,> >b k k . Note that in Eqs. 3.14 and 3.15 the factors b, k1, k2 and RB are determined so that the analytic 

model fits the empirical values describing the statistical characteristics of the MDT in the area under study and 
more precisely the variance and the correlation length. In Knudsen (1991) the reference MDT used was based on 
a harmonic expansion of the Levitus permanent SST performed by Engelis (1987). The degree variances of that 
model reached maximum values at degrees 2 to 3 and decayed very fast to zero at degree 10 (corresponding to 
~1800 km). Therefore, a Wiener-type of filtering function has been applied, based on Kaula’s rule of thumb for 
the decay of the geoid power spectrum, i.e., that the spectrum decays as q-4, q being the radial wave number. This 
translates to n

-3
 on a reference sphere (Knudsen, 1987). Under this consideration Eq. 3.15 can be written as 

(Knudsen, 1991): 

( )
3 33
2 1

3 3 3 3 3 3
2 1

10

10

  
= −  

+ + +   

c

n

k k
b

n k n k n

ζσ . (3.16)  

It should be noted that in recent studies, e.g., Vergos & Tziavos (2007), where a high-resolution MDT model has 
been used for the Mediterranean Sea (Rio & Hernandez, 2004), the corresponding cut-off frequency for the 
Wiener filter was found equal to ~200 km. Therefore, it is worth mentioning that its selection is empirical and it 
is based on maximum noise reduction with minimum signal loss taking into account the characteristics of the 
area under study (high/low-variability, strong/weak signal).  

In Knudsen (1991) a model of the signal degree variances of the time-varying sea surface topography δζ has 
also been introduced. According to Knudsen (1991) since δζ varies with time, time-dependency should be 
introduced in the computation of Cδζδζ in a way that temporal correlations have a behavior similar to the spatial 
ones. Therefore, for some time-separated points ∆t=|t-t′| the covariance function can be expressed as: 
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( ) ( ) ( ) ( )
( )0

cos
,

0

∞

=

 + ∆ ≤ + ∆  ∆ =  
+ ∆ > 

 

∑ n n

n

for tP t
t

for t

δζδζ δζ

δζδζ δζ

ψ κ πσ ψ κ
ψ

ψ κ π
C . (3.17) 

In Eq. 3.17, κδζ is a conversion factor representing in the case of the time-varying SST the correlation time of the 
signal. This should be studied and determined in each region under study, since the characteristics of δζ vary 
significantly for each area and in open or closed sea regions. In Eq. 3.17 for the covariance function and the 
resulting covariance matrix to be positive definite the degree variances should be non-negative and their sum 
finite (Moritz, 1980). As far as the conversion factor is concerned Knudsen (1991) has determined it to be equal 
to 0.53o day-1 for a study area in the Faeroe Islands. In complete analogy to the determination of the degree 
variances of the MDT presented in Eq. 3.15 the degree variance model of the time-varying SST can be described 
with the following formula: 

( )
3 3
2 1

3 3 3 3
2 1

 
= − 

+ + 
n

k k
b

k n k n

δζσ . (3.18)  

In the same manner as for the MDT, the signal degree variances of δζ are filtered by a Winer-type of filter. 
Therefore, taking into account that δζ is just the residual signal of the complete sea surface topography after 
removing the contribution of ζc, the final analytic model of the δζ degree variances can be written as: 

( )
3 33
2 1

3 3 3 3 3 3
2 1

10
1

10

  
= − −  

+ + +   
n

k k
b

n k n k n

δζσ . (3.19)  

Once again, the parameters b, k1, k2, κ
δζ are determined empirically so that the analytic model fits the empirical 

values describing the statistical characteristics of the time-varying sea surface topography in the area under study 
and more precisely the variance, the correlation length and the correlation time. Having determined all the 
covariance functions needed, one can apply the usual LSC solution outlined in §2 & §3 to obtain an estimation 
of any functional related to the Earth’s gravity field through Eq. 3.12. 

Of great importance are the resulting covariance and cross-covariance functions obtained by Knudsen & 
Tscherning (2006) for the velocities of the surface currents. Under the assumption of geostrophic flow (see Pond 
& Pickard, 2000) the two (latitudinal and meridian) components of the current velocities can be described in 
terms of the MDT as: 

c
g

u
fR

ζ
φ

∂
= −

∂
,  (3.20)  

cos

c
g

v
fR

ζ
φ λ
∂

=
∂

. (3.21)  

In Eqs. 3.20 & 3.21, f denotes the Coriolis force. Based on the aforementioned equations and the availability of a 
MDT covariance function, Knudsen (1991) determined analytic expressions for the geostrophic velocities auto- 
and cross-covariance functions, which of course depend on the azimuth aij of the side connecting i and j. The 
resulting formulas are: 

( )
2

cos cos sin sinuu ij ji ll ij ji qq

i j

g
a a a a

f f
= − −C C C , (3.22) 

( )
2

sin sin cos cosvv ij ji ll ij ji qq

i j

g
a a a a

f f
= − −C C C , (3.23) 

cosc ciju l

i

g
a

fζ ζ
= −C C , (3.24) 
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sinc cijv l
i

g
a

fζ ζ
=C C . (3.25) 

In Eqs. 3.22-3.25 the covariances Cll, Cqq, and clζ
C  are given as follows: 

( )2
2

1
cos sinc c c cll

R ζ ζ ζ ζ
ψ ψ′ ′′= −C C C , (3.26) 

2

1
c cqq

R ζ ζ
′=C C  (3.27) 

and 

1
sinc c c

l Rζ ζ ζ
ψ ′= −C C , (3.28) 

where, c cζ ζ
′C  and c cζ ζ

′′C  are first and second order derivatives of the MDT auto-covariance function. Taking into 

account the previously presented geostrophic velocities auto- and cross-covariance functions, it is possible to use 
LSC in order to estimate the ocean circulation in an area under study, when observables of the type presented in 
Eq. 3.12 are available. What should be stressed once more though is the necessity to derive covariance 
expressions which will fit the local characteristics of the quasi-stationary and the time-varying part of the SST in 
the area under study, since regional and global estimates cannot describe the statistical characteristics of the 
diverse oceanic environment. Extensive work on the determination of the MDT from heterogeneous data using 
LSC has been also performed in the frame of the GOCINA project by the group of the Danish National Space 
Agency (see Knudsen 2007, Knudsen et al. 2006, 2007a, 2007b) 

4 Combination schemes using GOCE, altimetry and gravity data 

This section focuses on a review of recent results obtained from combination schemes of simulated GOCE data, 
land and marine gravity anomalies and satellite altimetry sea surface heights (Barzaghi et al. 2007, 2008). The 
main focus has been put in assessing the performance of heterogeneous data combination for local geoid and 
mean dynamic topography (MDT) determination in view of the forthcoming GOCE mission using least squares 
collocation. The work and results presented in this section should be viewed as a continuation of what has 
already been presented in sections 2 and 3.  

The combination problem set-up was based on simulated GOCE data using the space-wise approach 
(Migliaccio et al. 2007) and available land and marine gravity anomalies and altimetric heights from the mission 
of ERS1 in an area in western Mediterranean Sea bounded between 35o

≤φ≤47o and 2o
≤λ≤20o. As mentioned in 

the previous sections, least squares collocation (Moritz 1980) has been and still is one of the predominant 
methods for local and regional geoid and gravity field determination due to, among other things, its robustness 
and statistical rigorousness (Sansò & Sideris 1997).  

Given available gravity observations, both at land and at sea, and altimetric geoid heights a predicted geoid 
undulation on land and at sea areas is estimated by the well known formula: 

( ) yCCCN
1ˆ −+= vvss

T

sN .  (4.1)  

Notice that in Eq. 4.1 it is assumed that altimetric sea surface heights are corrected for the MDT, in order to 
represent geoid heights, since omission of this can result in errors of some cm in the area under study (Rio and 
Hernadez, 2004; Vergos and Tziavos, 2007). In Eq. 4.1, y  denotes the vector of observations ∆g and N, ssC  is 

the covariance matrix of the input signals, sNC  is the cross-covariance matrix between the input signals and the 

predicted N and vvC  describes the covariance of the observation noise. In spherical approximation, the 

covariance and cross covariance functions to be used in eq. (4.1) can be obtained by: 

( ) ( )
max

min

2
22

2

, 4
1

+

∆ ∆
=

 
= −   

 
∑ %

P Q

n
n

B

g g n n

n n P Q

R
C n P t

r rR

µ
σ ,  (4.2)  



14 

QPQP TgNg CC ,,

1
∆∆ =

γ
,  (4.3)  

( ) ( )
max

min

12
2

, 3
1

++

∆
=

  
= −        

∑ %
P Q

nn
n

B B

g T n n

n n P Q

R R
C n P t

r rR

µ
σ ,  (4.4)  

QPQP TTNN CC ,2,

1

γ
= ,  (4.5)  

QPQP TTNT CC ,,

1

γ
= ,  (4.6)  

( )
max

min

1
22

, 2
 

+

=

 
=   

 
∑ %

P Q

n
n

B

T T n n

n n P Q

R
C P t

r rR

µ
σ ,  (4.7)  

where ψcos=t , ψ is the spherical distance, ( )n
P t  are Legendre polynomials of degree n, RB is the so-called 

radius of the Bjerhammar sphere, QP rr  ,  are the radii of the points P  and Q , µ  is the gravitational constant 

times the earth mass (GM), %
n

σ  are some adapted signal degree variances and γ  is the mean normal gravity used 

throughout the simulations. Notice that Eqs. 4.2-4.7 are completely analogous to those presented in §2, with the 
exception of %

n
σ  since here they result from a least squares fit of analytic covariance functions to empirical 

values (see details below). According to (Moritz, 1980) the prediction error covariance matrix can be computed 
by: 

( )( )sNvvss

T

sNNNe CCCCCC
1−+−=  ,  (4.8)  

where, the matrix NNC  is computed from the predicted covariances of N. For comparisons with the actual errors 

computed from simulations, the point-wise predicted standard deviation (std) iσ  of the estimated geoid height 

with integer index i can be used: 

( )iiei ,C=σ ,  (4.9)  

If in the combination scheme outlined in Eq. 4.1 the input vector includes data from the GOCE mission, i.e., 
observations of the potential T and of its second order derivatives Trr in a grid at satellite level, so that  

 =  
T

T T T Tos os

rry N ∆g T T . (4.10)  

then, complementary to Eqs. 4.2-4.7, the covariance functions of T and Trr as well as their cross-covariances are 
also needed. These are described in accordance to Eqs. 2.9-2.14, which if the signal degree variances cn are 
substituted by the adapted signal degree variances 2σ%

n
 become (Barzaghi et al. 2008): 
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QPrrQPrr TTNT CC ,,

1

γ
= . (4.14)  

The notation used in Eqs. 4.11-4.14 is the same as before. It is obvious that the signal and error cross-
covariance matrices used in output signal prediction Eq. 4.1 and the estimation of the error matrix will now 
include the covariances and cross-covariances of T and Trr as well.  

In the context of Barzaghi et al. (2007, 2008), which are reviewed in this section, a comprehensive analysis of 
the spectral content of the data and of their covariance functions has been performed. Therefore, covariance 
functions for all functionals used as inputs, i.e., ∆g, N, T, Trr  have been computed. This was done by fixing first 
a set of degree variances to the signal degree variances from the simulated input signal used. The latter was 
based on the differences between EGM96 (Lemoine et al. 1998) and EIGEN-GL04C (Förste et al. 2007), which 
were used as the true and reference models respectively. For degrees 2 to 360 the values used are 

( )2 2

0=

= +∑
n

n nm nm

m

C Sσ , (4.15)  

where 
nm

C  and 
nm

S  are the coefficients of degree n and order m  up to degree and order 360. For degrees 361 

and above, the well-known analytical model proposed by Tscherning & Rapp (1974) was used, i.e., : 

( )( )( )1 2 24
σ =

− − +l

l l l

a
. (4.16)  

In Eq. 4.16, a  is a scale parameter, selected so that the degree variances are similar in magnitude to the degree 
variances obtained from the GPM98 (Wenzel 1998) up to degree 720. It should be mentioned that in the 
simulations, and in order to achieve a high-resolution representation of the geoid in the area, all data sources 
have been augmented with signal from GPM98 from degree 361 to 720 and order 0 to 720. The variance for each 
of the four data types has been computed (from the aforementioned covariance functions at 0=ψ ) for different 

maximum degrees of summation maxn .  

From the results achieved in Barzaghi et al. (2007, 2008) it was concluded that as far as the gravity anomaly 
variances were concerned, the cumulative noise variance increased significantly with increasing maximum 
degree of summation, even at degree 1500. Even though the simulated noise was set equal to 5×10-5 ms-2 std, the 
cumulative signal up to degree 200 had a variance smaller than that. Therefore it was concluded that the low 
degree residuals could not be represented very well by gravity anomalies on a limiting area. When the potential 
at satellite altitude was examined, it was found that the cumulative variance after degree 100 does not change 
significantly. This was a clear proof of signal attenuation because of the satellite altitude, confirming that the 
information content of this type of data is of low resolution and regards long wavelengths only. The error std was 
determined at the 0.022 m2s-2 level which was small with respect to the signal variance (0.14 m2s-2 for degree 
15), so that the low harmonic degrees are represented very accurately. A similar behaviour is seen for the second 
order radial derivatives Trr at satellite altitude, with the difference that in this case, the variance is significant up 
to degree 150, and the very first harmonic degrees are not represented very well. To the available grid a 
simulated noise of 0.61×10-12 s-2 was assigned, so that up to degree 150 the representation of the signal is 
excellent. An interesting conclusion was drawn after taking a zoom around degree 200, from which it was visible 
that the variance still increased, so it was concluded that GGMs estimated from GOCE gradient observations can 
be useful up to degree 250 as it was also found in Migliaccio et al. (2007). From this analysis, an important 
conclusion was drawn, i.e., that computations with gravity anomalies aided by GOCE data give an improvement 
in geoid estimates (see Barzaghi et al. 2007) since gravity anomalies are not really sensitive to low degrees, 
while GOCE data can provide valuable information in this band of the gravity field spectrum, so that the two 
types of observations are complementary. When the geoid cumulative degree variances are examined, it is seen 
that it contains signal at all degrees, both low and high. So, when geoid computation is sought and at the same 
time we leave a direct observation of it, as it would happen with altimetry if we know a perfect model of MDT, 
only a filtering of the available (geoid) observations would be needed; in this sense, the four data types 
considered in this work would become redundant. Nevertheless, if errors exist in the available altimetric data, 
e.g., orbital errors, MDT omission due to unavailability of a proper model, tide misrepresentation, etc., then the 
information coming from GOCE observables, i.e., the potential and its second order derivatives, become strictly 
necessary in order to represent accurately low-frequencies and identify and remove the aforementioned errors.  

Following this analysis about the covariance functions of the observations, a geoid computation was 
performed with least squares collocation on a 12′×12′ spherical grid and the area was split in twentyfour 3°×3° 
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cells, so that the coordinate limits of cell ( )ji,  are computed as: ( )max 47 3 1ϕ = − −i , 3maxmin −= ϕϕ , 

( )132min −+= jλ  & 3minmax += λλ , where i =1,2,…,4 and j =1,2,…,6. Separate collocation solutions have 

been determined for each cell taking a 1o cell overlap for ∆g and N and a 2-4o cell overlap for T and Trr in order 
to get a more representative picture of the statistical characteristics of GOCE data. In each cell local empirical 
covariance functions have been determined for all four input functionals and a set of degree variances 2

n
σ%  was 

computed for each data type, so that the analytic covariance functions outlined in the previous section fit the 
empirical ones.  

As mentioned at the beginning of §4 the degree variances 2
n

σ%  have been determined after a least squares (LS) 

fit of all four empirical covariance functions which were used as observations in the fit. In this LS adjustment 
scheme the design matrix for each observation covariance has as many rows as the its empirical covariance 
values (observations) and as many columns as the degrees used; here there are 719 columns that correspond to 
degrees from 2 to 720. Thus, for the potential covariance function, the design matrix is: 
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R R h

µ
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where row i  refers to the empirical covariance value i  with spherical distance iψ  (ti=cosψi) and constant 

height for all points of the grid sath , and column j  refers to degree 1n j= + . The unknowns of the adjustment 

are thus just scales for the contribution of every degree to the observed empirical covariances with respect to 
some prior degree variances 2σ%n  computed from Eq. 4.15 for degrees 2 to 720, so that we put 2 2σ σ= %

n n nx . In a 

similar way the design matrices for the other functionals are: 
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When the four functional matrices are used together in the adjustment, they are weighted in order to avoid 
numerical instabilities (e.g., T has a different magnitude from Trr). A simple least squares fit though, is not 
convenient, for two reasons: a) too many empirical covariance values would be needed for all 719 parameters to 
be estimated and b) there will be negative estimated of some parameters that are not acceptable; in fact, the 
degree variances must be positive (Tscherning 1977). However, the estimation problem was solved by applying 
a regularization based on the minimization of the following hybrid norm: 

β minK+ =+ =+ =+ =T Tx xν νν νν νν ν , (4.21)  

where ν  is the vector of residuals of the least squares fit to the empirical covariance values, x  is the vector of 

parameters, β  is a regularization parameter (positive scale) and K  is a matrix making the expression Kxx
T  

equal to the sum of the squares of the differences between two consecutive parameters. An extensive discussion 
on the implications of the selection of the regularization parameter β, the form of matrix K and the iterative 
character of the entire process can be found in Barzaghi et al. (2008).  

From the covariance fit experiments performed it became evident once again that GOCE data and gravity 
anomalies have a complementary character. The former dominate the low degrees, while the latter dominate the 
high degrees, so that a good fit is achieved in every cell when T, Trr and ∆g are used simultaneously. An example 
is given for cell (4,4) in the area previously described and are presented in Figures 2-4 for the gravity anomalies, 
potential and second order derivatives covariance functions. Note that if only ∆g empirical covariance function is 
used for the estimation of 

l
%σ  then the corresponding covariance functions of T and Trr  do not fit well the 

empirical ones (Figures 3-4). On the other hand if only T and Trr empirical covariance functions are used for the 
estimation of 

l
%σ  then the corresponding covariance function of ∆g does not fit well the empirical one (Fig. 2). It 
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can therefore be concluded that the addition of GOCE data to local geoid computations improves also the local 
degree variances estimation. In fact with Figures 3 and 4 it is shown that the lack of long wavelength information 
of gravity anomalies leads to a poor estimation of the low degrees

l
%σ  for those data only. Then, this is a new 

contribution of the addition of GOCE data, i.e., a better estimation of the covariance function estimation.  
 

 
Figure 2: Gravity anomaly empirical covariance function 
(black solid line), analytical function corresponding to the 
degree variances computed from the fit to the empirical 
covariance functions of ∆g, Trr and T (grey dotted-dashed 
line), and analytical function corresponding to the degree 
variances computed from the fit to the empirical covariance 
functions of Trr and 650 T (black dotted-dashed line) for cell 
4,4. 

 

 
Figure 3: Potential empirical covariance function (black 
solid line), analytical function corresponding to the degree 
variances computed from the fit to the empirical 
covariance functions of ∆g, Trr and T (grey dotted-dashed 
line), and analytical function corresponding to the  degree 
variances computed from the fit to the empirical 
covariance function of ∆g (black dotted-dashed line) for 
cell 4,4. 

 
Figure 4: Radial derivatives empirical covariance function (black solid line), analytical function corresponding to the degree 
variances computed from the fit to the empirical covariance functions of ∆g, Trr and T (grey dotted-dashed line), and 
analytical function corresponding to the degree variances computed from the fit to the empirical covariance function of ∆g 
(black dotted-dashed line) for cell 4,4. 

With the inclusion of satellite altimetry data and their corresponding geoid empirical covariances there is 
redundant information. A first conclusion immediately drawn in these experiments was that the analytical 
functions did not fit well the altimetric empirical ones for most cells in the area under study. After a closer 
examination though, it became apparent that this was due to the fact that altimetry data referred to areas with a 
much smaller geoid variance compared to that of gravity data. A case like that can occur when altimetric data 
refer to areas with low geoid variability and gravity data to areas of rough terrain like the Alps. As a result of that 
the altimetry-derived geoid empirical covariances seemed to correspond to smaller degree variances %

n
σ  than 

those implied by the empirical covariance functions of the other three data types used together. A solution to that 
drawback comes from GOCE data, since after extending the geoid grid with a 3 or 4 degrees overlap (to match 
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the GOCE data area used in the region under study), the empirical geoid covariance function computed from this 
grid, fits the propagated analytic function coming from %

n
σ  estimated from the other three data types very well. 

In marine areas the geoid empirical covariance function from altimetry, the corresponding propagated geoid 
covariance function coming from the other three functionals and the geoid empirical function from a grid 
extension (a grid of geoid generated so as to cover also some land areas) are all in agreement.  

From the geoid prediction results derived with all possible data combination schemes (single type solutions 
and all kinds of multi-type data combination) it was concluded that the addition of GOCE data to gravity 
anomalies ∆g and satellite altimetry geoid heights N leads to significant improvement, since a marked decrease 
in the estimation errors was evident when more data types were incorporated in the collocation solution 
(Barzaghi et al. 2007, 2008). In addition to the reduction in the prediction error, edge effects, data gaps and 
distribution problems are much attenuated with the inclusion of GOCE data. In purely marine areas where good 
quality geodetic mission altimetry data are used, the predicted geoid error in the altimetric-only solution is very 
low (±1-2 cm level) (ibid.). When adding ∆g as another input functional the solution deteriorates, while GOCE 
data provide only a small improvement (by a few mm) compared to the altimetric-only one. This is of course an 
optimistic view of altimetric marine geoid modelling, since it presumes that the MDT signal removed, is of very 
high-quality, so that no mean value problems remain and the propagated error in the geoid solution is small. It is 
well-known though, that especially in closed sea areas, the available MDT and ocean circulation models are of 
questionable quality, since most of them come from the altimetric data, they display a high-correlation with the 
altimetric geoid model errors as well as problems close to the coastline and the islands which dominate areas like 
the Mediterranean Sea. Moreover, in-situ oceanographic observations which could provide an independent 
estimation of the MDT, are few in closed sea areas contrary to the more common case of open areas like in the 
Atlantic and Pacific Oceans, where campaigns for large scale circulation studies and cross-calibration with 
altimetric satellites are conducted. But, even in areas where oceanographic observations are available, their small 
number and ship track-like pattern do not allow for an independent high-resolution determination of the MDT. 
So another experiment for geoid determination was done with the inclusion of the MDSST signal to the 
altimetric sea surface height observations. After repeating the geoid prediction for all cells in the area under 
study, it was found that the effect of the MDT is visible in marine areas only. For the same area referred to 
above, the error rms error increases to 12.4 cm with a std of 3.2 cm when the MDT signal is added. This is a 
good picture of the problems caused in altimetric marine geoid modelling when a MDT model is used to reduce 
the SSH data. Of course, such a free-air correction is mandatory if the geoid surface is needed as opposed to the 
case that the mean sea surface is determined. A good solution to this common problem in marine geoid 
modelling comes from GOCE data. In the aforementioned experiment, when Trr and T data were added, part of 
the original accuracy was restored (std of 3.4 cm) and the mean value problem evident in the altimetry-only 
solution was removed, since the error rms droped to 3.6 cm. Higher frequency information was restored with the 
addition of gravity anomalies, since the error std drops to 2.9 cm when ∆g, Trr and T data were added. 

From such results in data combination studies including GOCE data it can be concluded that: a) in all cases 
geoid prediction errors are improved significantly when heterogeneous data are implemented in the solution 
compared to single type solutions, b) it is important to obtain rigorously fitted local covariance functions that 
describe adequately the statistical characteristics of the data in the area, especially when the region under study 
has varying topography and mixed both land and marine areas (see also Barzaghi et al. 2007, 2008), c) long-
wavelength errors coming from both gravity anomalies on land and altimetric geoid heights at sea are reduced in 
all cases when GOCE data enter the solution, d) the addition of GOCE data will benefit geoid modelling and 
gravity field approximation in general over both marine and land areas by, among other things, identifying and 
consequently correcting long-wavelength and other possible errors. 

5 The second order kriging; a new proposal for the analysis of altimetric data 

Along the same frame of employing heterogeneous data for geoid estimation, a new proposal is presented for the 
analysis of altimetric data using what we call second order kriging. We send to (Wackernagel 2003) for a general 
review of this technique. So, let us write the altimetric observation equation (2.1) in the form 

( ), 1, 2,3,...,
t t t

h a bt s v t= + + + = ∆ , (5.1)  

where all terms are referred to a single satellite track i, so that we do not need to use this index explicitly (as in 
Eq. 2.1), and can put the origin of times at Di, because we need here to reason on the time span of the track i 
only. Also, in Eq. 5.1 we have denoted the combined effect of signals 

t
N  and 

t
ζ  in a common signal denoted 

by 
t

s , i.e. it is just 
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t t t
s N ζ= + . (5.2)  

The concept of optimal linear estimation/prediction already introduced in §2 and further illustrated in §3 and 
§4, relies essentially on the possibility of knowing a priori the second order moments (covariances) of all signals 
that we want to predict. When these are not known, we have to estimate them from available data. As for the 
anomalous potential T we can always use the free-air gravity anomalies in the area and a covariance function of 
the form presented in Eq. 2.5 to infer the degree variances ( )n

c T , especially when we adopt a parametric model, 

e.g., that of Tscherning and Rapp (see Tscherning and Rapp 1974).  
If we had then a means to estimate the covariance of  ( ) ( ) ( )s P N P Pζ= +  from available data, then we 

could know as well ( ),C P Qζζ , because, thanks to our hypothesis of independence of N from ζ (see point (viii) 

in §2), we must have 

( ) ( ) ( ), , ,
ss NN

C P Q C P Q C P Qζζ= + . (5.3)  

We propose here a new method of estimating ( ),
ss

C P Q  from the observations given in Eq. 5.1, which is based 

on a slight generalization of the kriging concept. We notice first of all that due to the hypothesis of homogeneity 
and isotropy of both T and ζ, and that of s(P) too, we will have 

( ) ( ),ss ss PQC P Q C ψ= . (5.4)  

Furthermore, since the orbits of the altimetric satellites are close to circular and their motion has an almost 
constant angular velocity, we can put along one of our tracks 

( ) ( ) ( ),
t tss t t ss P P ss

C P P C C
ττ ψ τ
++ = = , (5.5)  

since the time difference between the two sub-sequent satellite points is t τ∆ = . What we want to find is an 

empirical estimator of ( )ss
C τ , namely a quadratic function of the sample data { }ts  such that its mean value is 

equal to (or close to) ( )ss
C τ . 

If we knew a-priori the parameters a and b in Eq. 5.1, then we could subtract a bt+  from the signal ( )y t  and 

then compute the ordinary estimator 

( ) ( )( )
1

1ˆ
t

C y a bt y a bt b
τ

τ τ
τ

∆−

= − − − − −
∆ − ∑ . (5.6)  

Since we do not know a and b, in order to use Eq. 5.6, we have first to estimate them from the available data and 

then use these estimates ˆˆ,a b  instead of ,a b . This approach has been criticized in the general statistical 

literature (see Cressie 1993 and Wackernagel 2003) and a solution has been given in terms of the so-called 

kriging theory. The criticism is based on that optimal ˆˆ,a b  can be derived only if we know the covariance 

structure of 
t t

s v+ , otherwise the covariance of the estimation error ( ) ( ) ( )ˆˆe t a a b b t= − + −  can contaminate 

significantly the covariance presented in Eq. 5.6, since it now becomes  

( ) ( )( )
1

1 ˆ ˆ ˆˆ ˆ ˆ
t

C y a bt y a bt b
τ

τ τ
τ

∆−

= − − − − −
∆ − ∑ . (5.7)  

Such a criticism might be less urgent when we have many data for a long time span ∆, though, even for 

sequences of hundreds of data the error in â and b̂  can have a significant impact in our prediction work. In fact, 
as it will be shown in next paragraph, the correlated signal s, due to the limited number of data in the sample, can 
display a quite important pseudo- bias and a pseudo-tilt. So when we go to tracks confined to an internal sea, like 
the Mediterranean, they are necessarily short and the expected estimation error for a and b becomes even larger. 
Considering the shape of this area, the inclination of the orbits, the velocity of the satellites and the fact that one 
measurement per second is taken (actually this is a mean of 1000/s pulses for SEASAT and GEOSAT and 
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4000/s pulses for T/P, which generate approximately 128 waveform samples from which the instantaneous sea 
surface height is derived (Chelton et al. 2001), we can hardly find tracks in the Mediterranean Sea with more 
than 200 data, while 100 observations or even less is more the rule than the exception.  

As we have already recalled a solution has been found by kriging theory which, instead of the covariance 

( )C τ  uses the so-called variogram (or Kolmogorov’s structure function), defined by the formula 

( ) ( ){ } ( ) ( ){ }2 21 1

2 2
s t s t s tτγ τ τ   = Ε ∆ = Ε + −    . (5.8)  

Since ( )γ τ  is based on averaging the square of a first order difference operator, it is clear that any bias in the 

data is eliminated from an empirical estimator of the form 

( )
( )

[ ]2

1

1ˆ
2 t t ty y

τ

τγ τ
τ

∆−

+= −
∆ − ∑ . (5.9)  

Yet, since we have a tilt parameter too in our model, namely the observation equation 5.1, we see that 

( ){ } ( )2 2 21ˆ 2
2 vbγ τ τ γ τ σΕ = + + , (5.10)  

i.e., ( )γ̂ τ  is still affected by b. The situation is dealt with in literature by the so-called universal kriging theory 

(see Wackernagel 2003). There, the variogram is substituted by a so-called generalized covariance function. 
However, not many recipes for its empirical estimation are given. Here we propose the use of a second order 
variogram which is much simpler and can be easily estimated, taking into account the repeat pattern of data 
points, namely t=1,2,3,…∆.  

We can define the second order variogram as  

( ) { } [ ]{ }2 22
2

1 1
2

2 2s t t t ts s s sτ τ ττ + + Γ = Ε ∆ = Ε − +  , (5.11)  

The motivation for introducing the definition in Eq. 5.11 is twofold. On one side, by taking the second difference 
of equation 5.1 one gets 

( )2 2
2 2

t t t t t t
y y y y s vτ τ τ τ+ +∆ = − + = ∆ + , (5.12)  

because 21 0τ∆ = , 2 0tτ∆ = , i.e., linear functions are eliminated by the 2
τ∆  operator. Therefore, considering that 

{ } [ ]{ }2 22 2
2

1 1
2 3

2 2t t t t vv v v vτ τ τ σ+ + Ε ∆ = Ε − + =  , (5.13)  

and that { }ts  and { }tv  are uncorrelated sequences, we finally arrive, according to the definition of the second 

order variogram in Eq. 5.11, to  

( ) ( ) 23
y s y
τ τ σΓ = Γ + . (5.14)  

On the other side, the definition of ( )τΓ  opens the way to an empirical estimation through the obvious 

formula  

( )
( )

[ ]
2

2

2
1

1ˆ 2
2 2y t t t ty y y

τ

τ ττ
τ

∆−

+ +Γ = − +
∆ − ∑ , (5.15)  

The combination of Eqs. 5.14 and 5.15 yields an estimation procedure for ( )ˆ
s
τΓ  and 2ˆ

v
σ . In fact 2ˆ

v
σ  can be 

estimated by the so-called nugget effect (see Wackernagel 2003) in Eq. 5.15, namely by taking 
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( )2 1 ˆˆ 0
3v y

σ += Γ . (5.16)  

Notice that in this relation ( )ˆ 0y

+Γ  is not ( )ˆ 0
y

Γ , which is always zero, but represents the limit of ( )ˆ
y
τΓ  when 

τ tends to zero from the right.  
Subsequently we can put,  

( ) ( ) ( )2ˆ ˆ ˆ3 , 0
s y v
τ τ σ τΓ = Γ − > . (5.17)  

We immediately note at this point that in principle ( )ˆ
s
τΓ  can be estimated for all 

2
τ

∆
< , yet it is not advisable 

to go over 
4

∆
 because beyond this limit the empirical estimator presented in Eq. 5.15 will not use anymore the 

central values of { }ty  , with an obvious loss of significance. This means in our context that we shall have a 

number of ( )ˆ
s
τΓ  varying between and 20 and 40, which however should be enough to infer the theoretical 

shape of ( )s
tΓ . In this respect, we observe that one could study the general theoretical properties of ( )τΓ  to 

find the proper class of random signals that could be treated in this way. Yet, this is out of the scope of this 
paper, where we assume that the sequence { }ts  has a stationary covariance. In fact our aim is just to find a 

reliable estimator ( )Ĉ τ , so that the algorithm of collocation with parameters could be applied. So the only thing 

we need is to develop the square in Eq. 5.11 to find 

( ) ( ) ( ) ( )3 0 4 2
s

C C Cτ τ τΓ = − + . (5.18)  

An analogous reasoning for { }ty  Eq. 5.15 and the observation equation 5.1 gives  

( ) ( )( ) ( ) ( )23 0 4 2y vC C Cτ σ τ τΓ = + − + . (5.19)  

If we put ( )ˆ
y
τΓ  and 2ˆ

v
σ  in Eq. 5.19 we can use this formula as a difference equation to estimate ( )Ĉ τ . 

Notice that in this way the use of Eq. 5.19 depends on the knowledge of C(0) too and of the values C(2τ) for 

large τ. On the other hand if we assume, as we do, that ( ) 0C τ →  for τ →∞ , we can reasonably take ( )ˆ 0C τ =  

for τ τ> , so that one can define all the ( )Ĉ τ  values for τ τ≤ . The procedure will be illustrated in the next 

section by two examples, one with simulated observations and another employing sea surface height data from 
the exact repeat mission of TOPEX/Poseidon. It seems interesting too to note that Eq. 5.19 can be expressed in 
terms of the ordinary variogram. In fact, revealing that ( ) ( ) ( ) ( )2 20ν νγ τ σ τ σ γ τ= + − = +y C C , it is easy to 

verify that Eq. 5.19 translates into 

( ) ( ) ( )4 2
y
τ γ τ γ τΓ = − , (5.20)  

which could also be used to derive an empirical estimator of γ(τ). In fact, assuming that beyond a value τ , ( )γ τ  

becomes constant, then Eq. 5.20 tells us that ( ) ( )3 ,
y
τ γ τ τ τΓ = ∀ > . Then we can enter into the interval τ τ<  

and inserting from ( ) ( )ˆ 2γ τ τ= Γ  for 2τ τ>  we can finally get  

( ) ( ) ( )1ˆ ˆ 2
4

γ τ τ γ τ = Γ +  , (5.21)  

for 1, 2, 3,...τ τ τ τ= − − − . 
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6 Numerical examples 

In this section we want to demonstrate the feasibility of the proposal presented in §5. For this purpose we first 
present two simulation examples which are treated according to slightly different approaches and which allow to 
assess the signal prediction error along the previous lines. In the first case the simulated track carries 400 data, in 
the second case only 100 data, therefore it gets closer to the short altimetric tracks found throughout the 
Mediterranean Sea. In both cases the numerical procedure followed has been the same, changing only the 
dimension of the sample.  

The simulated model follows Eq. 5.1 and in particular we had adopted the following: 
 

Linear trend: a=0.200;    b=0.001;    t=1, 2, 3, …, ∆;    ∆=400 or ∆=100. 

Signal:  realization of length ∆ from the stationary covariance ( ) T
o

C C e
τ

τ
−

= ;    0,1, 2,...,τ = ∆ ;    

Co=0.0200;    T=25. 
Noise: Gaussian with zero average and σv=0.03. 
 

Numbers are expressed in meters for the observations and seconds for times. So the trend goes from 20 cm up 
to 60 cm when ∆=400 and up to 30 cm when ∆=100; the signal has a standard deviation value of 14 cm and the 
noise of 3 cm.  

Note that the mean correlation time T is quite long; we have chosen such a high value on purpose because this 
produces almost deterministic waves in the data and a possible sensible linear pseudo-trend, though the 
theoretical average of st is zero. This is particularly evident in the sample of 400 data, where a pseudo-bias of 15 
cm (at epoch t=0) and a pseudo-tilt of -0.06 cms-1 are present (see Figure 5). Indeed this is not always like that, 
for instance such an effect is much less pronounced for the sample of 100 data (see Figure 6). Yet it happens 
many times, according to our simulations, so we wanted to consider such an effect in one of the presented cases.  
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Figure 5: Simulated signal (400 values) in dotted line, pseudo-linear trend in continuous line. 

Now we come to the analyses performed. For each of the two samples four results have been derived that we 
shall call cov1, cov2, var1, var2 specifically: 

 
cov1: bias and tilt are estimated by least squares, with a covariance matrix proportional to the identity; 

from the residuals an empirical covariance is estimated making it possible to calculate 2ˆ ˆ ˆ, ,
o y

C T σ ; 

this is done by first identifying the model and then fitting empirical values by a simple, i.e., un-
weighted least squares; finally from the residuals and the empirical covariance function a 
prediction of the signal, 

t̂
s , is performed and the mean square prediction error is estimated from 
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( )
1

2
2

1

1
ˆ

t t ts s
∆ 

Ε = − 
∆ 
∑ , (5.22)  
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Figure 6: Simulated signal (100 values) in dotted line, pseudo-linear trend in continuous line. 

cov2: is an attempt of refining cov1 in the sense that the covariance estimated in cov1 is now used to 
produce a, hopefully, better bias an tilt and then the whole estimation procedure is repeated. 

var1: in this case, the second order empirical variogram ( )ˆ τΓ  is estimated from Eq. 5.15,  

( )
( )

[ ]
2

2

2
1

1ˆ 2
2 2y t t t ty y y

τ

τ ττ
τ

∆−

+ +Γ = − +
∆ − ∑ , (5.23)  

 then an empirical covariance function ( )Ĉ τ  is estimated by substituting Eq. 5.19 in Eq. 6.2, 

namely  

( ) ( )( ) ( ) ( )23 1 1ˆ ˆ0 2
4 4 4vC C Cτ σ τ τ= + + − Γ . (5.24)  

 Eq. 5.24 is initialised by considering ( )ˆ 2 0C τ =  above a threshold τ  and by using an estimate of 

( ) 20
v

C σ+ as the mean quadratic value of the residuals of a simple linear regression as in cov1; 

from the empirical covariance function we then derive a positive definite model by interpolating 
the empirical values with a parametric family and estimating the parameters via a simple least 
squares; 

var2: in this case we use Eq. 5.19 with the empirical estimates ( )ˆ τΓ , as an observation equation for some 

theoretical covariance family, ( ),
o

C G τ θ , and estimate the parameters Co, θ by simple least 

squares; in order to clarify the above, in our case we put 

( )
2

ˆ 4A C e e y
τ τ

ο ττ
− −
Τ Τ

 
Γ = − − + 

 
, (5.25)  

and we linearize and solve for the parameters A, Co, T considering that the estimated quantities 
have to fulfil the constrain  
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1 ˆ ˆ 0
3

A Cο− > , (5.26)  

because we can then put  

2 1 ˆˆ
3v o

A Cσ = − . (5.27)  

The results of our small simulation examples are summarized in the Tables 1 and 2 listed below.  

Table 1. Results of interpolation and filtering for the sample with ∆=400 (first line presents theoretical values; units in 
parentheses).  

 a (m) b (ms-1) 2
vσ (m2) Co (m

2) T (s) E (m) 

theoretical 0.2000 0.0010 0.0009 0.0200 25.0000 ----------- 
cov1 0.3633 0.0003 0.0012 0.0176 24.6175 0.4770 

cov2 0.3524 0.0004 0.0000 0.0175 17.4829 0.0734 

var1 0.3521 0.0004 0.0012 0.0175 25.6800 0.0706 

var2 0.3517 0.0004 0.0015 0.0183 27.6033 0.0706 

Table 2. Results of interpolation and filtering for the sample with ∆=100 (first line presents theoretical values; units in 
parentheses).  

 a (m) b (ms-1) 2
vσ (m2) Co (m

2) T (s) E (m) 

theoretical 0.2000 0.0010 0.0009 0.0200 25.0000 ----------- 
cov1 0.2532 0.0019 0.0001 0.0123 9.6834 0.0377 

cov2 0.2846 0.0014 0.0000 0.0109 2.0531 0.0301 

var1 0.2855 0.0013 0.0005 0.0119 10.1516 0.0277 

var2 0.2953 0.0012 0.0017 0.0205 14.5654 0.0217 

 
These two examples are typical, as for the results, of a number of trials performed and allow us to draw some 
conclusions: 

(i) The poor performance, for all methods, in estimating the trend a+bt is due to the presence of 
pseudo-biases and pseudo-tilts in the sampled signals as it can be seen in Fig. 5, for ∆=400, and 
Fig. 6, for ∆=100; in particular the phenomenon is quite relevant for the case of ∆=400 (Fig. 5) and 
this is also the reason why the value of E in this case is quite large. 

(ii) The second step of collocation (cov2) does not always lead to an improvement over cov1. 
(iii) The filtering through a step of estimation of the second order variogram is generally better that the 

first two methods. 

(iv) The direct estimation of the covariance structure from ( )ˆ τΓ , i.e., (var2) gives generally the best 

results in terms of signal prediction. 
Notice that the first comment in the above list justifies for a further important remark: the correct formulas for 

the estimation of the prediction error of the signal is the one derived from collocation theory with parameters 
(recalled in §2) and not the one coming from the application of standard formulas of collocation without 
parameters, because in the last case the influence of the estimation error of the parameters is not accounted for. 
In the present context it means that the covariance matrix of the error of the predicted signals ŝ  is: 

1 1 1 1
ˆˆ ˆ ˆ

T

ee yy yy yyss ss ss

− − − − = − − C C C C C AN A C C , (5.28)  

where 
yy ss vv
= +C C C  and A is the design matrix of the linear regression. As we see, Eq. 6.7 has an additional 

term with respect to the simple formula 1
ˆˆ ˆ ˆee yyss ss ss

−= −C C C C C , and it is precisely this term that describes the 

influence of the error in the regression parameters. 
Finally, we have analyzed as an example a true track (track no. 9 in Fig. 7) from the TOPEX/Poseidon 

mission in the Mediterranean Sea, which bears 131 observations of the sea surface height (see Fig. 8). The data 
have been first compared with a geoid profile derived from the GPM98 (Wenzel 1999) geopotential model, 
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tailored to the European-Mediterranean area, in order to leave into signal st only a small residual geoid, plus 
trend and SST. Then the trend (i.e., a and b) and the covariance have been estimated once with the cov1 
approach and a second time with the var2 approach. After a first glance to the empirical covariance, we have 
decided to use the same exponential model as in the two simulation examples. The results are presented in Table 
3, where similar symbols as in Tables 1 and 2 have been used.  

 
Figure 7: TOPEX/Poseidon tracks in the western part of the Mediterranean Sea (red circle denotes track no.9).  

Table 3. Trend and covariance of the sea surface topography for a T/P track. 

 a (m) b (ms-1) 2
vσ (m2) Co (m

2) T (s) 

cov1 0.3607 -0.0071 0.0068 0.1202 15.578285 
var2 0.5802 -0.0106 0.0015 0.0612 16.045754 

Naturally in this case we cannot say what is the truth and therefore we cannot decide which solution is better. 
Yet, we see first of all that the two estimates of (a,b) are significantly different; moreover, the model cov1 with 
its 34 cm of signal and 8 cm of noise seems to be slightly less realistic than var2, with 24 cm of signal and 4 cm 
of noise. This agrees as well with the conclusions drawn from the simulation examples. In addition, a collocation 
solution along the track, performed with the sole target of filtering the noise, gives in the two cases the results 
shown in Fig. 9. As one can see, while the solution cov1 has still a significant systematic error left in the 
residuals, the solution var2 can follow very well the relevant features of the signal st.  
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Figure 8: TOPEX/Poseidon track no. 9 sea surface heights (dotted line) and GPM98 geoid heights (solid line). 
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Figure 9: Observed signal (crosses), cov1 filtered signal (dashed line), var2 filtered signal (solid line). 

7 Conclusions 

A detailed review of the principles, observation and estimation equations of least-squares collocation have been 
presented in heterogeneous data combination schemes. An analytic description of all auto- and cross-covariance 
functions has been given for the combination of gravity anomalies, altimetric geoid heights, and GOCE 
observations of the potential and of its second order derivatives. Moreover, the spectral domain FFT-based 
method of Multiple Input Multiple Output System Theory has been presented with a detailed example for the 
combination of the aforementioned functionals of the Earth’s gravity field towards the determination of geoid 
heights. Apart from the covariances of the input data described analytic models for the determination of the 
covariances of the quasi-stationary and time-varying sea surface topography have been reviewed. The main goal 
was to present a comprehensive and complete, from all points of view, picture of the application of LSC in the 
study of the Earth’s gravity field and the advantage of using geodetic data and methods in the determination of 
oceanographic quantities like the geostrophic velocities. This is of special importance in view of the forthcoming 
launch of the GOCE mission in 2008.  

From the results presented in the combination tests with simulated GOCE data, some important conclusions 
can be drawn: a) the first one is that in all cases the geoid prediction is drastically improved when all the 
heterogeneous data are implemented in the solution. It has been that heterogeneous data give much better 
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solutions than single-data type; b) what is also of utmost importance is the fact that well fitted local covariance 
functions need to be determined to describe the local statistical characteristics. Even in neighbouring cells in the 
test area, with different characteristics and mixture of land and sea, the statistical properties of the gravity field 
varied significantly; c) long-wavelength errors coming from both gravity anomalies on land and altimetric geoid 
heights at sea are reduced in all cases when GOCE data are used in a LSC solution. This is a very important fact, 
since it allows to separate the geoid and the MDT signal in marine areas and to remove orbital errors from 
altimetric SSHs. The geoid and MDT signals dominate an overlapping band of the gravity field spectrum so 
filtering and stacking of SSH data cannot separate them. Moreover, orbital errors in altimetric observations, 
which have a long wavelength signature, cannot be completely removed with crossover adjustment. Therefore, 
the addition of GOCE data will improve geoid modelling and gravity field approximation in general over both 
marine and land areas by identifying and consequently correcting long-wavelength errors; d) computations from 
gravity anomalies aided by GOCE data give an improvement in geoid estimates, since gravity anomalies are not 
really sensitive to low degrees, while GOCE data provide valuable information in this band of the gravity field 
spectrum. From the geoid cumulative degree variances, it is evident that they contained signal at low as well as 
at high degrees. So, when dealing with altimetric data, that , after a pre-processing still contain orbital errors, 
MDT inaccuracies, tidal errors etc, the information coming from GOCE observables is of great importance to 
identify and remove the aforementioned effects. 

 Finally, from the newly proposed application of second order kriging and the results of the simulation 
performed, some further important conclusions can be drawn: a) the poor performance of all methods, in 
estimating the trend a+bt in short arcs is due to the presence of pseudo-biases and pseudo-tilts in the sampled 
signals as it can was seen from Figures 5 and 6. This leads to the conclusion that the correct formulas for the 
estimation of the prediction error of the signal are those derived from collocation theory with parameters instead 
of those coming from the application of standard formulas of collocation without parameters, because in the last 
case the influence of the estimation error of the parameters is not accounted for; b) the second step of collocation 
(cov2) does not always lead to a sensible improvement over cov1; c) filtering through a step of estimation of the 
second order variogram is generally better that applying the first two methods; d) the direct estimation of the 

covariance structure from ( )ˆ τΓ  (var2) gives generally the best results in terms of signal prediction. In the tests 

with the real T/P SSHs in the Mediterranean Sea, two solutions have been determined, i.e., one with the cov1 and 
another with the var2 model. The results with var2, with 24 cm of signal and 4 cm of noise can be regarded as 
more realistic compared to the model cov1 with its 34 cm of signal and 8 cm of noise for the MDT. Finally, the 
cov1 collocation solution along a real T/P track, performed with the sole target of filtering the noise, presents a 
significant systematic error in the residuals, while the solution with var2 follows very well the relevant features 
of the stationary sea surface topography. Here lies the future direction of this work, which will be the 
comparison of the estimated ζc and δζ both from LSC using the covariances and cross-covariances presented in 
§3 and the newly proposed second-order kriging approach.  
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