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Abstract. Using GEOSAT GM altimetry data, 
shipborne gravity, land gravity and GPS/leveling 
data, a numerical solution for the fixed altimetry-
gravimetry boundary value problem (AGBVP) II is 
evaluated and tested. Two types of solutions are 
applied – with and without smoothness conditions 
along the coastline. Data available in the area of 
Newfoundland, eastern coastal region of Canada, are 
used. A comparison with a standard estimation 
method for the efficient combination of 
heterogeneous data, namely multiple input, multiple 
output system theory (MIMOST), is carried out. 
Conclusions for the combination of different data 
types and smoothness conditions along the coastline 
are drawn. 
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111   Introduction 
Altimetry-gravimetry boundary value problems 
(AGBVPs) provide the frame in which the 
combination of different types of data is possible. 
Historically, the first type of AGBVPs appeared in 
Sanso (1981) and Arnold (1983), known later as 
AGBVP I. Another type of AGBVP formulated in 
Holota (1980) is used when gravity data are 
available at sea, known later as AGBVP II. Holota 
treated both problems in a linearized form in Holota 
(1983a and 1983b). Later, with the availability  of 
GPS/levelling data, a new AGBVP appeared, called 
AGBPV III (Lehmann, 1999). All AGBVPs consist 
of two different types of geodetic boundary value 
problems (GBVPs), one on land and one at sea. 
They depend on the type of boundary surface and 
boundary conditions (measurements) used. In Sanso  
(1993), different types of GBVPs are described both 
on land and at sea.  At sea we have only one type of 
GBVP - Dirihlet BVP with known boundary surface. 
On land two types of GBVPs are possible: the 

classical Molodensky GBVP with completely 
unknown boundary surface and the scalar free 
Molodensky GBVP with known geodetic latitude 
and longitude for every point. The first type of BVP, 
called vectorial free classical Molodensky BVP, has 
an important role from a theoretical point of view 
because it has more general character. From the 
application point of view, astronomical observations 
are necessary to solve this GBVP. This fact causes 
complications in the application of the classical 
Molodensky BVP. In practice, the general 
formulation of AGBVPs given in Lehmann (1999) is 
more suitable. It shows that AGBVPs consist of two 
parts: scalar free (unknown boundary surface) on 
land and fixed (known boundary surface) at sea. 

Using GPS/levelling on land, the boundary 
surface becomes known (AGBVP III). In this case, 
we can use as boundary either the Earth’s surface or 
the geoid from GPS/levelling. The Earth’s surface 
has two main disadvantages – it is not an 
equipotential surface and it is rougher than the 
geoid. Usually, we have gravity anomalies on the 
geoid, which means that they can be transformed to 
gravity disturbances using GPS/levelling, and in this 
case, we will have the same type of data (for 
AGBVP II) both on land and at sea. Having gravity 
disturbances on the geoid, both for land and sea, we 
are able to apply Hotine’s formula to derive the 
geoid. The main problem in this approach is the 
proper application of downward continuation, 
especially in mountainous areas. 

Compatibility conditions along the coastline for a 
solution of AGBVPs have been discussed by 
Svensson. The addition of compatibility conditions 
along the coastline may cause the problem to 
become well posed but it is questionable if such 
conditions upon the data are realistic for practical 
use (Svensson, 1988). To answer this question, the 
effect of compatibility (smoothing) conditions on 
same type boundary conditions (gravity anomalies) 
has been investigated in Grebenitcharsky and Sideris 
(2001a). For a numerical solution of the fixed 
AGBVP II, combining different types of data with 
compatibility (smoothing) conditions along the 



 

coastline will increase the regularity of boundary 
surface and boundary conditions in coastal zones. 
Variational methods for the solution of GBVPs 
(Holota, 1997) are applied in the solution of 
AGBVPs very often. Finally, the conclusion given in 
Rektorys (1977) that “if all data of the considered 
problem (including the boundary) are sufficiently 
smooth, then the weak solution is the classical 
solution of the considered problem” justifies the 
reason to investigate the smoothing procedure along 
the coastline for the fixed AGBVP II, transformed to 
the Neumann boundary value problem.  

The task of this paper is thus to investigate a 
numerical solution of the fixed altimetry-gravimetry 
boundary value problem II using GPS/levelling and 
gravity data on land together with altimetry and 
shipborne data at sea; and to investigate the effects 
of applying smoothing conditions along the coastline 
on geoid modelling.  

The area under study is 43° ≤ φ ≤ 57° and 298° ≤ 
λ ≤ 312° (Newfoundland, Eastern Canada). The 
following data are used: free air gravity anomalies 
on land from the Geological Survey of Canada; 
GPS/Levelling data on benchmarks from the 
Geodetic Survey Division; shipborne free-air gravity 
anomalies from the Geological Survey of Canada; 
and GEOSAT geodetic mission (GM) satellite 
altimetry data at sea from NOAA (NOAA, 1997). 

The EGM96 geopotential model is used as 
reference field. The global quasi-stationary sea 
surface topography (QSST) model derived from the 
simultaneous EGM96 adjustment complete to degree 
and order 20 is used for the reduction of the data 
from the sea surface to the geoid.   

To assess the accuracy of the numerical solution, 
a comparison with the Canadian geoid CGG2000 is 
performed. Also, a comparison with a Multiple Input 
Multiple Output System Theory (MIMOST) 
(Sideris, 1996) solution is done to assess the 
accuracy of the numerical solution with respect to a 
standard heterogeneous data combination method.   

222   Numerical Solution of AGBVP II 
The mixed AGBVP II in spherical approximation 
(Sanso, 1993) is given in eq. 1 with the following 
notation: T is the disturbing potential, ∆ is the  
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Laplace’s operator, r is the radial distance from the 
center of the sphere, R is the radius of the sphere, ∆g 
are the gravity anomalies and δg are the gravity 
disturbances. 

The boundary condition on land can be 
reformulated using geoid heights from GPS/leveling 
and Bruns’s equation as follows: 
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where G is mean gravity and N is the geoid height 
from GPS/Leveling. 

After reformulation of the land boundary 
condition and applying smoothing conditions along 
the coastline (to have regular boundary surface and 
regular boundary conditions, i.e., data) AGBVP II is 
transformed to an Neumann boundary value problem 
(Rektorys, 1977). Evaluating by 2D FFT the 
spherical Hotine convolution integral with 50 
kilometers integration radius, a numerical solution 
for the fixed AGBVP II is obtained. 

Smoothing (Compatibility) 
Conditions along the Coastline 

333   

For AGBVP I and AGBVP II, it has been shown 
(Svensson, 1998) that with the introduction of 
additional compatibility conditions on coastline, 
both problems become normal solvable (satisfying 
the Fredholme alternative). To achieve this, 
Svensson (1983) introduced the new approach of 
pseudodifferential operators. Using the theory of 
pseudodifferential operators it is possible not only to 
reformulate existing AGBVPs but to apply the 
compatibility conditions along the coastline 
(Grebenitcharsky and Sideris, 2001b). Together with 
new pseudodifferential operators, which are 
mappings between different Sobolev spaces, a new 
form of AGBVP I and AGBVP II is possible. The 
derivation of the compatibility conditions on the 
coastline shows that they correspond to the case 
when the boundary conditions (measurements) for 
land and sea are consistent along the coastline. To 
answer the question “if compatibility conditions 
upon the data are realistic for practical use” 
(Svensson, 1988), the effect on geoid of data and 
boundary surface smoothing along the coastline 
should be investigated.  

From a theoretical point of view, the regularity of 
the boundary surface and the boundary conditions  is 
the necessary condition for the numerical solution of 
AGBVP II to be close enough to the solution of the 
classical Neumann boundary value problem 



(Rektorys, 1977). From an application point of view, 
existing discrepancies between different data with 
different resolution and accuracy could be smoothed 
before the application of the numerical solution. The 
regularity of data and boundary surface is closely 
related to their derivatives up to infinit order and 
therefore, wavelet transforms could be used as 
multiscale differential operators (Mallat, 1998). The 
necessary and sufficient condition for a wavelet 
transform to be an n-order multiscale differential 
operator is the corresponding wavelet to have n 
number of vanishing moments. Wavelet 
decomposition and reconstruction could be used to 
detect and smooth irregularities along the coastline 
(Grebenitcharsky and Sideris, 2001a). 

The properties of wavelets to give not only the 
frequencies of a signal but also their spatial 
distribution in different scales can be used to detect 
discrepancies between different data along the 
coastline. A wavelet decomposition and 
reconstruction can be used to impose smoothness 
compatibility conditions (Grebenitcharsky and 
Sideris, 2001b) on data and the boundary along the 
coastline. After the decomposition up to a certain 
level, we could eliminate irregularities on the 
coastline in the high frequency part of the 
decomposition. This is equivalent to imposing 
constrains on the nth derivatives (i.e., we use 
smoothness conditions). The effect of smoothing 
along the coastline on the final geoid solution is 
investigated not only for Hotine’s solution but for a 
solution by MIMOST. The effect of smoothing 
conditions along the coastline on the boundary 
surface, on boundary conditions and on transformed 
boundary conditions is investigated. 

444   Other Solutions 

To assess the results of the numerical Hotine 
solution, they were compared to the following three 
solutions: 
Solution 1: Evaluation by 2D FFT of the spherical 
Stokes integral kernel after simple merging of 
gravity anomalies on land and at sea. 
Solution 2: Application of multiple input, multiple 
output system theory (MIMOST) method 
(Andritsanos et al. 2000) for combination of gravity 
anomalies (on land and at sea) and geoid heights 
(GPS/leveling on land and GEOSAT-GM altimetry 
data at sea). The noise level is 10 cm for 
GPS/leveling and GEOSAT-GM data and 3 mGal 
for land and shipborne gravity data. Due to the lack 
of specific information about the errors in both 
altimetric and gravimetric solutions, simulated 
noises were used as input error. Randomly 

distributed fields (white noise) were generated in 
Matlab® using 10 cm standard deviation for the 
altimetry derived geoid heights and 3 mGal standard 
deviation for the gravimetric one. The final solutions 
from the combination method were calculated 
according to the following equation: 
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Solution 3: The most recent gravimetric geoid of 
Canada, CGG2000. The CGG2000 residuals to  
EGM96 show a mean value of –0.680 m with a 
standard deviation of 0.268 m. 

555   Comparison and Validation of the 
MIMOST Solution 

Before the comparison of our numerical solution to 
the MIMOST solution, it is necessary to validate the 
MIMOST solution itself. The solution using the 
MIMOST method is compared with GPS/leveling 
and GEOSAT GM data, the 2D FFT spherical 
Stokes solution with gravity anomalies, and the 
CGG2000 geoid. GPS and GEOSAT data are 
referenced to EGM 96.  

Table 1. Statistics of MIMOST solution. Unit: [m]. 
Solution (data) max min mean std 

MIMOST 0.759 -0.592 0.191 ±0.154 

Table 2. Statistics of differences of MIMOST solution from 
other solutions. Unit: [m]. 

Differences 
with 

max min mean std 

GPS&GEOSAT 0.970 -1.071 -0.003 ±0.209 
Solution 1 1.264 -0.473 0.366 ±0.209 
CGG2000 1.740 -0.194 0.926 ±0.267 

The MIMOST solution is presented graphically in 
Figure 1. The smoother surface on land is due to the 
influence of the resolution of GPS/leveling data. The 
MIMOST solution is closest to the data from 
GPS/levelling and GEOSAT (see table 2) because of 
the higher apriory accuracy used for GPS and 
GEOSAT data. Differences with Solution 1 (see 
table 2) are due to the small weight of the gravity 
anomalies in MIMOST. The differences between the 



 

mean values in table 2 are due to the different 
referencing. CGG2000 refers to the mean sea level 
at several tide gauges; altimetry data are related to 
the sea surface and solution 1 is referenced to the 
geoid (sea surface corrected for the QSST). 

 
Fig. 1: MIMOST solution (residuals to EGM96). 

666   Comparison and Validation of the 
Numerical Solution of AGBVP II 
To validate the numerical solution of AGBVP II, it 
is compared to the  2D FFT spherical Stokes 
solution with gravity anomalies, the CGG 2000 
geoid and the MIMOST solution.  

Table 3. Statistics of numerical solution. Unit: [m]. 
Solution (data) max min mean std 
Num. solution 0.418 -0.821 -0.241 ±0.151 

Table 4. Statistics of differences of the numerical solution 
from other solutions. Unit: [m]. 

Differences 
with 

max min mean std 

Solution 1 0.349 -0.371 -0.058 ±0.042 
CGG2000 1.476 -0.539 0.459 ±0.310 
MIMOST 0.398 -1.236 -0.419 ±0.205 

The numerical solution is closest to Solution 1. 
The differences with Stokes’s solution are 
negligible. The differences are due to GPS/leveling 
and GEOSAT data. In the numerical solution 
GPS/leveling and GEOSAT (corrected for the 
QSST) data can be considered as part of known 
boundary. The solution depends mostly on gravity 
data. Differences with CGG2000 are mainly due to 
the QSST which was neglected in the CGG2000 
solution; the numerical solution does not contain the 

effect of QSST. After restoring the effect of QSST 
on the numerical solution, the mean value of the 
differences with CGG2000 is close to zero.  

 
Fig. 2: Numerical solution  (residuals to EGM96).  

    
Fig. 3: Differences between numerical solution and  
            CGG2000. 

The main contribution to the numerical solution 
comes from gravity data. In terms of mean value, the 
numerical solution is closer to CGG2000, which 
shows again the gravimetric character of the 
numerical solution.  A comparison with the 
MIMOST solution shows a better geoid modeling on 
land (see Figure 1 and Figure 2), 



 
Fig. 4: Differences between numerical solution and 
            MIMOST. 

which can be seen in the differences between 
numerical and MIMOST solutions (Figure 3), as 
well.  

Both the numerical solution and the MIMOST 
solution have been compared to a previous altimetry 
and shipborne gravity solution at sea only (Vergos et 
al., 2001). The changes in the coastline region due to 
the gravity data and GPS/leveling on land exist in 
both solutions. At the same time, a comparison to 
the solution with altimetry and shipborne data only 
at sea shows that the numerical solution is closer in 
terms of mean value (see table 5) and the standard 
deviations are very close.  

Table 5. Statistics of differences to the altimetry and 
shipborne solution at sea only. Unit: [m]. 

Differences  max min mean std 
Num. Solution 0.645 -0.892 0.005 ±0.240 

MIMOST 1.257 -0.628 0.424 ±0.232 

777   Effect of Smoothing Conditions 
along the Coastline on the Numerical 
and MIMOST Solutions 

In numerical and MIMOST solutions gravity data 
are considered as boundary conditions and at the 
same time, GPS/leveling and GEOSAT could be 
considered as part of known boundary surface. 
Smoothing conditions along the coastline are applied 
on boundary surface and boundary conditions (data) 
before the computation of the geoid. The effects of 
smoothing along the coastline are the differences 
between the geoid determined from original data and 
the geoid determined from smoothed data along the 

coastline. For the numerical solution, the effects of 
smoothing conditions on the boundary surface and 
on the data have been investigated separately. The 
gray scale in Figure 6 is different from the values in 
the table 6, because the figure represents a smaller 
area. 

 
Fig.5: Differences between numerical solution and altimetry 
           and shipborne solution at sea only 

Table 6. Statistics of smoothing effects. Unit: [m]. 
Differences  max min mean std 

Num. Solution 0.645 -0.892 0.005 ±0.240 
Num. Solution-

boundary 0.001 -0.001 0.000 ±0.001 

MIMOST 1.257 -0.628 0.424 ±0.232 

The smoothing effects (see table 6) on the 
numerical solution range between -0.137m and 
0.103 m. For MIMOST, they have grater magnitude, 
between -0.234 m and 0.165 m. For the MIMOST 
method, the smoothing effects on the boundary (GPS 
and altimetry data) are larger, because of larger 
weight of these data in the combined solution and 
existing discrepancies between GPS and altimetry 
data. The smoothing of the boundary surface does 
not have an effect on the geoid (see table 6), in the 
numerical solution. The MIMOST solution is more 
sensitive to the smoothing on the boundary surface 
than the numerical solution. In both cases, the 
smoothing effects are concentrated in the coastal 
region. 

Conclusions 888   
After the analysis of the results obtained, the  

following conclusions are drawn: 



 

• The suggested numerical solution with 
gravity disturbances as boundary data both on 
land and at sea can be successfully applied for the 
solution of the fixed AGBVP II. 

 
Fig. 6: Effect of smoothing along the coastline on the numerical 
            solution 

• The numerical solution is closer to the pure 
gravity solution taking into account GPS and 
GEOSAT data. These data describe the boundary 
surface and take part in the solution implicitly 
through the transformation of the boundary 
condition. 
• The significant differences with CGG2000 are 
because the numerical solution does not contain the 
effect of QSST while CGG2000 does. After 
restoring the effect of SST in numerical solution, the 
mean value of the differences became zero.  
• The smoothing of the boundary surface does not 
have an effect on geoid determination – the 
magnitude of this effect is 1mm! 
• The smoothing on the boundary conditions 
(data) gives a maximum effect on the final geoid 
solution between -0.137 m and 0.103 m. 

• The numerical solution is less sensitive to 
discrepancies between GPS/leveling and altimetry 
data. Even greater discrepancies between 
GPS/levelling and altimetry data do not have 
smoothing effects along the coastline.        
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